
The Multi-Agent Transport Simulation
MATSim

edited by

Andreas Horni, Kai Nagel, Kay W. Axhausen

Extract of selected chapters to serve as user guide.

— This version: April 25, 2024—

Contents

Title Page 1

Table of Contents i

I Using MATSim 1

1 Introducing MATSim 3
1.1 The Beginnings . 3
1.2 In Brief . 4
1.3 MATSim’s Traffic Flow Model . 6
1.4 MATSim’s Co-Evolutionary Algorithm . 7

2 Let’s Get Started 9
2.1 Setting Up and Running MATSim . 9

2.1.1 Setting Up MATSim . 9
2.1.2 Running MATSim . 10
2.1.3 Configuring MATSim . 11

2.2 An Example Scenario . 13
2.3 Building and Running a Basic Scenario . 14

2.3.1 Typical Input Data . 14
2.3.2 Typical Output Data . 17
2.3.3 Data Requirements . 18
2.3.4 Units, Conventions, and Coordinate Systems 19
2.3.5 Open Scenario Input Data . 21

2.4 MATSim Survival Guide . 22

3 Available Functionality and How to Use It 25
3.1 MATSim Modularity . 25
3.2 Levels of Access . 26

3.2.1 Using MATSim through the GUI with config, network, and population only 26
3.2.2 Using MATSim through the GUI with additional files 26
3.2.3 Writing “Scripts in Java” . 26
3.2.4 Using Contribs or External Extensions . 27
3.2.5 Writing Your Own Extensions . 27

3.3 The Ideas Behind this Setup . 28
3.4 An Overview of Existing MATSim Functionality . 29

4 More About Configuring MATSim 33
4.1 General . 33
4.2 MATSim Data Containers . 33

i

Table of Contents Table of Contents

4.2.1 Network . 33
4.2.2 Population . 33
4.2.3 Further MATSim containers . 34

4.3 Global Modules and Global Aspects . 34
4.3.1 controler config file section . 34
4.3.2 Parallel Computing . 34
4.3.3 global config file section . 35

4.4 Mobility Simulations . 35
4.4.1 QSim . 36
4.4.2 JDEQSim . 37
4.4.3 Hermes . 37

4.5 Scoring . 37
4.6 Replanning Strategies . 38

4.6.1 Plans Generation and Removal (Choice Set Generation) 38
4.6.2 Plan Selection (Choice) . 40
4.6.3 Innovation Switch-Off . 41

4.7 Observational Modules . 41
4.7.1 Travel Time Calculator . 41
4.7.2 Link Stats . 41

4.8 More Information . 41

II Visualizers 43

5 Simunto Via 44
5.1 Basic Information . 44
5.2 Introduction . 44
5.3 Simple Usage . 45
5.4 Use Cases and Examples . 47

5.4.1 Agent Visualization . 47
5.4.2 Facility Analysis . 47
5.4.3 Public Transport Analysis . 48
5.4.4 Scenario Comparisons . 49
5.4.5 Aggregating Data . 49

6 SimWrapper 51
6.1 Basic Information . 51
6.2 Introduction . 52
6.3 Starting SimWrapper . 52
6.4 Using SimWrapper to view MATSim results . 53

6.4.1 SimWrapper views based on regular MATSim output 53
6.4.2 SimWrapper dashboard generated by the SimWrapper contrib 53
6.4.3 Self-configured SimWrapper dashboards . 53

6.5 Building interactive dashboards with SimWrapper . 54
6.6 To learn more . 55

7 OTFVis 57
7.1 Basic Information . 57
7.2 Introduction . 57
7.3 Quickstart . 58
7.4 More Ways of Using OTFVis . 58

7.4.1 MVI Files (unmaintained) . 58
7.4.2 Starting OTFVis from the commandline (unmaintained) 58
7.4.3 Use Cases of OTFVis (unmaintained) . 59
7.4.4 Viewing an MVI File (unmaintained) . 60
7.4.5 General Interaction with the Main Screen . 61

April 25, 2024 ii

Table of Contents Table of Contents

7.4.6 User Interaction in the Live Mobsim . 61
7.4.7 Running a Query in OTFVis Real Time Data . 62

7.5 Extending OTFVis . 63
7.5.1 Design Principles of OTFVis . 63
7.5.2 Readers and Writers . 64
7.5.3 Visualization of the Data . 64
7.5.4 Layers . 64
7.5.5 Patching the Connections . 65
7.5.6 Sending the Data . 65
7.5.7 Performance Considerations . 65
7.5.8 Sending Live Data . 65

III Generation of MATSim input 67

8 Generation of the Initial MATSim Input 68
8.1 Coordinate Transformations in Java . 68
8.2 Network Generation . 69

8.2.1 From OpenStreetMap . 69
8.2.2 From Other Sources . 69

8.3 Initial Demand Generation . 69
8.3.1 Simple Initial Demand . 69
8.3.2 Realistic Initial Demand . 70

9 Eqasim 71
9.1 Basic Information . 71

IV Additional core features 73

10 Additional MATSim Data Containers 74
10.1 Attributable . 74
10.2 Time-Dependent Network . 75
10.3 Subpopulations . 75
10.4 Counts . 76
10.5 Facilities . 77
10.6 Households . 78
10.7 Vehicles . 78

11 Multi-modal QSim and its interaction with routing 79
11.1 Other Modes than Car: Introduction . 79
11.2 Other Modes than Car: Routing Side . 80

11.2.1 Routing Side: Teleportation . 80
11.2.2 Routing Side: Network Modes . 81
11.2.3 Routing Side: Passenger Modes . 82
11.2.4 Other Routing Options . 82

11.3 Other Modes than Car: QSim Side . 82
11.3.1 QSim Side: Teleportation . 82
11.3.2 QSim Side: Network Modes . 83
11.3.3 QSim Side: Explicitly Simulated Passenger Modes 83
11.3.4 QSim Side: Departure Handlers . 84

11.4 Other Modes than Car: Scoring Side . 85
11.5 Vehicle Types and Vehicles . 85

11.5.1 Vehicle sources and vehicle IDs . 85
11.5.2 Vehicle Placement and Behavior . 86

11.6 Legs, trips, and interaction activities . 87

April 25, 2024 iii

Table of Contents Table of Contents

11.7 Access/egress routing . 88
11.8 Other . 88

12 Modeling Public Transport with MATSim 89
12.1 Basic Information . 89
12.2 Introduction . 89
12.3 Data Model and Simulation Features . 90
12.4 File formats . 91

12.4.1 transitVehicles.xml . 91
12.4.2 transitSchedule.xml . 91
12.4.3 Events for a public transit trip . 93

12.5 Swiss Rail Raptor . 94
12.6 Running with small sample sizes . 94
12.7 Possible Improvements . 94

10 A Closer Look at Scoring 97
10.1 Good Plans and Bad Plans, Score and Utility . 97
10.2 The Current Charypar-Nagel Utility Function . 98

10.2.1 Mathematical Form . 98
10.2.2 Basic Function . 98
10.2.3 Activities . 99
10.2.4 Travel . 101
10.2.5 Illustration . 102
10.2.6 The “Wrapping Around” of the Utility Function 103
10.2.7 MATSim Scoring, Opportunity Cost of Time, and the VTTS 103
10.2.8 The Resulting Modeling of Schedule Delay Costs 104

10.3 Implementation Details . 105
10.3.1 Negative Durations . 105
10.3.2 Score Averaging . 106
10.3.3 Forcing Scores to Converge . 106

10.4 Typical Scoring Function Parameters and their Calibration 107
10.5 Helper functions . 108

10.5.1 Experienced plans . 108
10.6 Applications and Extensions of the Scoring Function 108
10.7 Appendix: Old Version of the Zero Utility Duration . 109

V Analysis 111

11 CSV outputs 112
11.1 MATSim standard CSV outputs . 112
11.2 Recommendations for using CSV in the MATSim context 112

11.2.1 CSV file format variations: delimiters, header, quotes, and comments 113
11.2.2 Guidance on creating MATSim-standard CSV files 113

12 Python bindings 115
12.1 Basic Information . 115
12.2 Introduction . 116
12.3 Installation . 116
12.4 Using the MATSim Python API . 116

13 R bindings 119
13.1 Basic Information . 119
13.2 Introduction . 119
13.3 Installation . 120
13.4 Using the R API . 120

April 25, 2024 iv

Table of Contents Table of Contents

14 The “Analysis” Contribution 121
14.1 Basic Information . 121
14.2 Summary . 121

15 Emissions 123
15.1 Basic Information . 123
15.2 Introduction . 123
15.3 Integrated Approaches for Modeling Transport and Emissions 124
15.4 Emission Calculation . 125
15.5 Software Structure . 126

16 Noise 129
16.1 Basic Information . 129

17 Accidents 131
17.1 Basic Information . 131

VI Extending MATSim 133

18 Dynamic Transport Services 135
18.1 Introduction . 135
18.2 DVRP Contribution . 136
18.3 DVRP Model . 137

18.3.1 Schedule . 137
18.3.2 Least-Cost Paths . 138

18.4 DynAgent . 138
18.4.1 Main Interfaces and Classes . 138
18.4.2 Configuring and Running a Dynamic Simulation 139
18.4.3 RandomDynAgent Example . 139

18.5 Agents in DVRP . 140
18.5.1 Drivers . 140
18.5.2 Passengers . 140

18.6 Optimizer . 141
18.7 Configuring and Running a DVRP Simulation . 142
18.8 OneTaxi Example . 142
18.9 Research with DVRP . 143

19 The “Minibus” Contribution 145
19.1 Basic Information . 145
19.2 Paratransit . 145
19.3 Network Planning or Solving the Transit Network Design Problem with MATSim 146

20 Destination Innovation 149
20.1 Basic Information . 149
20.2 Introduction . 149
20.3 Key Issues in Developing the Module . 150

20.3.1 Error Terms . 150
20.3.2 Quenched Randomness . 150
20.3.3 Search Space Construction and Evaluation . 152
20.3.4 Destination Choice Set Specification . 152
20.3.5 Facility Load . 154

20.4 Application of the Module . 155
20.5 The Module in the MATSim Context . 158
20.6 Lessons Learned . 158
20.7 Further Reading . 158

April 25, 2024 v

Table of Contents Table of Contents

21 How to Write Your Own Extensions and Possibly Contribute Them to MATSim 159
21.1 Introduction . 159
21.2 Preparation: Scripts-in-Java . 160
21.3 MATSim Extension Points: General . 161
21.4 Extension Points Related to Scenario . 161

21.4.1 Customizable and ObjectAttributes . 161
21.4.2 Additional Scenario Elements . 162

21.5 Events . 162
21.6 Configuring the Controler (= inject syntax) . 163

21.6.1 Binding a Class (= an Implementation Type) 163
21.6.2 Binding an Instance . 164
21.6.3 Binding a Provider (not important to get started) 164
21.6.4 MATSim default bindings . 165
21.6.5 Advantages of the injection framework . 165
21.6.6 Pre-configured MATSim extension points . 165
21.6.7 ControlerListener: Handling Controler Events 166
21.6.8 Mobsim Listener . 167
21.6.9 TripRouter . 167
21.6.10 Mobsim . 167
21.6.11 PlanStrategy . 168
21.6.12 Scoring . 169

21.7 Additional Config Groups . 169
21.8 MATSim extensions . 170
21.9 Conclusion . 170

22 Organization: Development Process, Code Structure and Contributing to MATSim 171
22.1 MATSim’s Team, Core Developers Group, and Community 171
22.2 Roles in the MATSim Community . 174
22.3 Code Base . 174

22.3.1 Main Distribution . 174
22.3.2 Core . 175
22.3.3 Contributions . 175
22.3.4 Playgrounds . 176
22.3.5 Contributions and Extensions . 177
22.3.6 Releases, Nightly Builds and Code HEAD . 177

22.4 Drivers, Organization and Tools of Development . 177
22.5 Documentation, Dissemination and Support . 178
22.6 Your Contribution to MATSim . 178

Acronyms 184

Glossary 189

Bibliography 193

April 25, 2024 vi

Part I

Using MATSim

1
Introducing MATSim

Authors: Andreas Horni, Kai Nagel, Kay W. Axhausen

initial
demand analyses mobsim scoring

replanning

1.1 The Beginnings

The Multi-Agent Transport Simulation (MATSim) project (MATSim, 2016) started with Kai Nagel, then at
ETH Zürich, and his interest in improving his work with the TRansportation ANalysis and SIMulation
System (TRANSIMS) project (Smith et al., 1995; FHWA, 2013); he also wanted to make the resulting
code open-source.1 After Kai Nagel’s departure to Berlin in 2004, Kay W. Axhausen joined the team,
bringing a different approach and experience. A collaboration, successful and productive for more
than 10 years, was thus established, combining a physicist’s and a civil engineer’s perspective, as well
as bringing together expertise in traffic flow, large-scale computation, choice modeling and Complex
Adaptive Systems (CAS):

• Microscopic modeling of traffic: MATSim performs integral microscopic simulation of resulting
traffic flows and the congestion they produce (see Section 1.3).

• Microscopic behavioral modeling of demand/agent-based modeling: MATSim uses a microscopic
description of demand by tracing the daily schedule and the synthetic travelers’ decisions. In
retrospect, this can be called “agent-based”.

• Computational physics: MATSim performs fast microscopic simulations with 107 or more “parti-
cles”.

1TRANSIMS has, since then, also become open-source (TRANSIMS Open Source, 2013); but in 2000, it was difficult to procure
in Europe.

3

Chapter 1. Introducing MATSim 1.2. In Brief

• Complex adaptive systems/co-evolutionary algorithms: MATSim optimizes the experienced utilities
of the whole schedule through the co-evolutionary search for the resulting equilibrium or steady
state (see Section 1.4).

At the end of the 1990s, the scene was set for these research streams’ mergence into a computationally
efficient, modular, open-source software enabling further development on travel behavior, network
response and efficient computation: MATSim.

1.2 In Brief

MATSim is an activity-based, extendable, multi-agent simulation framework implemented in Java. It
is open-source and can be downloaded from the Internet (MATSim, 2016; GitHub, 2015). The frame-
work is designed for large-scale scenarios, meaning that all models’ features are stripped down to
efficiently handle the targeted functionality; parallelization has also been very important (e.g., Dobler
and Axhausen, 2011; Charypar, 2008). For the network loading simulation, for example, a queue-based
model is implemented, omitting very complex and computationally expensive car-following behavior
(see Section 1.3).

At this time, MATSim is designed to model a single day, the common unit of analysis for activity-based
models (see, for example, the review by Bowman, 2009a). Nevertheless, in principle, a multi-day model
could be implemented (Horni and Axhausen, 2012).

As shown in Section 1.4, MATSim is based on the co-evolutionary principle. Every agent repeatedly
optimizes its daily activity schedule while in competition for space-time slots with all other agents on
the transportation infrastructure. This is somewhat similar to the route assignment iterative cycle, but
goes beyond route assignment by incorporating other choice dimensions like time choice (Balmer et al.,
2005), mode choice (Grether et al., 2009), or destination choice (Horni et al., 2012b) into the iterative
loop.

initial
demand analyses mobsim scoring

replanning

Figure 1.1: MATSim loop, sometimes called the MATSim cycle.

A MATSim run contains a configurable number of iterations, represented by the loop of Figure 1.1 and
detailed below. It starts with an initial demand arising from the study area population’s daily activity
chains. The modeled persons are called agents in MATSim. Activity chains are usually derived from
empirical data through sampling or discrete choice modeling. A variety of approaches is suitable, as
evidenced in the scenarios’ chapters (cf. Chapter ??). During iterations, this initial demand is optimized
individually by each agent. Every agent possesses a memory containing a fixed number of day plans,

April 25, 2024 4

Chapter 1. Introducing MATSim 1.2. In Brief

-50

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450 500

Av
g.

 sc
or

e

Iteration

Figure 1.2: Typical score progress.

where each plan is composed of a daily activity chain and an associated score. The score can be
interpreted as an econometric utility (cf. Chapter ??).

In every iteration, prior to the simulation of the network loading with the MATSim mobility simulation
(mobsim) (e.g., Cetin, 2005), each agent selects a plan from its memory. This selection is dependent on
the plan scores, which are computed after each mobsim run, based on the executed plans’ performances.
A certain share of the agents (often 10%) are allowed to clone the selected plan and modify this clone
(replanning). For the network loading step, multiple mobsims are available and configurable (see Horni
et al., 2011b, and Section 4.4 of this book).

Plan modification is performed by the replanning modules. Four dimensions are usually considered
for MATSim at this time: departure time (and, implicitly, activity duration) (Balmer et al., 2005), route
(Lefebvre and Balmer, 2007), mode (Grether et al., 2009) and destination (Horni et al., 2009, 2012b).
Further dimensions, such as activity adding or dropping, or parking and group choices are currently
under development and only available experimentally. MATSim replanning offers different strategies
to adapt plans, ranging from random mutation to approximate suggestions, to best-response answers
where, in every iteration, the currently optimal choice is searched. For example, routing often is a
best-response modification, while time and mode replanning are random mutations.

Initial day chains do not have to be very carefully defined for the replanning dimensions included in
the optimization process. Plausible values just speed up the optimization process.

If an agent ends up with too many plans (configurable), the plan with the lowest score (configurable) is
removed from the agent’s memory. Agents that have not undergone replanning select between existing
plans. The selection model is configurable; in many MATSim investigations, a model generating a logit
distribution for plan selection is used.

An iteration is completed by evaluating the agents’ experiences with the selected day plans (scoring).
The applied scoring function is described in detail in Chapter 10.

The iterative process is repeated until the average population score stabilizes. The typical score devel-
opment curve (Figure 1.2, taken from Horni et al., 2009) takes the form of an evolutionary optimization
progress (Eiben and Smith, 2003, Figure 2.5). Since the simulations are stochastic, one cannot use

April 25, 2024 5

Chapter 1. Introducing MATSim 1.3. MATSim’s Traffic Flow Model

inflow
cap

outflow
cap

link

node

waiting
queue

Figure 1.3: Traffic flow model.

convergence criteria appropriate for deterministic algorithms; for a discussion of possible approaches
for the MATSim situation, see Sections ?? and ?? as well as Meister (2011).

MATSim offers considerable customizability through its modular design. Although implementing alter-
native core modules, such as an alternative network loading simulation, may entail substantial effort,
in principle, every module of the framework can be exchanged. MATSim modules are described in
Chapter 3 and following.

MATSim is strongly based on events stemming from the mobsim. Every action in the simulation gener-
ates an event, which is recorded for analysis. These event records can be aggregated to evaluate any
measure at the desired resolution. The event architecture is detailed in Section 21.5.

1.3 MATSim’s Traffic Flow Model

MATSim provides two internal mobsims: QSim and Java Discrete Event Queue Simulation (JDEQSim); in
addition, external mobility simulations can be plugged in. Some years ago, the Discrete Event Queue
Simulation (DEQSim) written in C++ and described by Charypar (2008); Charypar et al. (2007b,a, 2009) was
plugged into MATSim and frequently used. The multi-threaded QSim is currently the default mobsim.

Charypar et al. (2009) distinguishes between

• physical simulations, featuring detailed car following models,

• cellular automata, in which roads are discretized into cells,

• queue-based simulations, where traffic dynamics are modeled with waiting queues,

• mesoscopic models, using aggregates to determine travel speeds, and

• macroscopic models, based on flows rather than single traveler units (e.g., cars).

As MATSim is designed for large-scale scenarios, it adopts the computationally efficient queue-based
approach (see Figure 1.3). A car entering a network link (i.e., a road segment) from an intersection
is added to the tail of the waiting queue. It remains there until the time for traveling the link with
free flow has passed and until he or she is at the head of the waiting queue and until the next link
allows entering. The approach is very efficient, but clearly it comes at the price of reduced resolution,
i.e., car following effects are not captured. In JDEQSim, for computational reasons, the waiting-queue
approach is combined with an event-based update step (Charypar et al., 2009). In other words, there

April 25, 2024 6

Chapter 1. Introducing MATSim 1.4. MATSim’s Co-Evolutionary Algorithm

Species1..n

optimized
population

Initial
population

recombination

mutation

survivor
selection

parent
selection

parents

offsprings

Fitness
evaluation

Species0

optimized
plans

Initial plans

Scoring

replanning

Execution

Agent1..n

Optimized
plans

Initial plans

Optimized
population

Initial
population

Scoring

Recombination

Mutation

Survivor selection

Parent selection

Parents

Offspring

Fitness
evaluation

Replanning

Execution

MATSim Co-Evolutionary Algorithm

Agent0

Interaction

Interaction

Figure 1.4: The co-evolutionary algorithm in MATSim.

is no time-step-based updating process of any agent in the scenario. Instead agents are only touched
if they actually require an action. For example, links do not have to be processed while agents traverse
them. Update events triggering is managed by a global scheduler. QSim, however, is time-step based.
The MATSim traffic flow model is strongly based on the two link attributes: storage capacity and flow
capacity. Storage capacity defines the number of cars fitting onto a network link.

Flow capacity specifies the outflow capacity of a link, i.e., how many travelers can leave the respective
link per time step. It is an individual attribute of the link. The current implementation of QSim has no
maximum inflow capacity specified. In contrast, in the earlier DEQSim and current JDEQSim, an inflow
capacity can also be specified, which may move jams at merges from the end of the first common link,
where the QSim generates them, upstream to where the links merge and where they plausibly should
be (Charypar, 2008, p. 99). However, additional data is needed for this, which is often not available.

This basic traffic flow model has been extended with various modules: Signals and multiple lane model-
ing are available for the QSim (Chapter ??); backward-moving gaps, as investigated by Charypar (2008),
are included in both in QSim (see Section 4.4.1) and in JDEQSim. Interactions between different modes
are described in Section 11.1 and Chapter ??.

1.4 MATSim’s Co-Evolutionary Algorithm

As illustrated in Figure 1.4, the MATSim equilibrium is searched for by a co-evolutionary algorithm (see,
e.g., Popovici et al., 2012). These algorithms co-evolve different species subject to interaction (e.g.,
competition). In MATSim, individuals are represented by their plans, where a person represents a
species. With the co-evolutionary algorithm, optimization is performed in terms of agents’ plans, i.e.,
across the whole daily plan of activities and travel. It achieves more than the standard traffic flow
equilibria, which ignores activities. Eventually, an equilibrium is reached, subject to constraints, where
the agents cannot further improve their plans unilaterally.

April 25, 2024 7

Chapter 1. Introducing MATSim 1.4. MATSim’s Co-Evolutionary Algorithm

Note that there is a difference between the application of an evolutionary algorithm and a co-evolutionary
algorithm. An evolutionary algorithm would lead to a system optimum, as optimization is applied with
a global (or population) fitness function. Instead, the co-evolutionary algorithm leads to a (stochastic)
user equilibrium, as optimization is performed in terms of individual scoring functions and within an
agent’s set of plans.

April 25, 2024 8

2
Let's Get Started

Authors: Marcel Rieser, Andreas Horni, Kai Nagel

This chapter explains how to set up and run MATSim and describes the requirements for building
a basic scenario. Updated information may be available from http://matsim.org, in particular from
http://matsim.org/docs.

Getting the source code into different computing environments and extending MATSim through the
Application Programming Interface (API) is described in Part II, Chapter 21.

2.1 Setting Up and Running MATSim

2.1.1 Setting Up MATSim

To run MATSim, you must install the Java Standard Edition (Java SE) that complies with the appropriate
MATSim version. At this time (spring 2023), this is Java SE 17.

MATSim example project on github There is a so-called example project at https://github.com/

matsim-org/matsim-example-project.

9

http://matsim.org
http://matsim.org/docs
https://github.com/matsim-org/matsim-example-project
https://github.com/matsim-org/matsim-example-project

Chapter 2. Let’s Get Started 2.1. Setting Up and Running MATSim

This version is targeted to programmers who are fluent with an Integrated Development Environment
(IDE) (e.g. Eclipse, IntelliJ) and Java, and who want program against MATSim. The preferred workflow is:

1. Fork this project into your own workspace at GitHub.

2. Clone the forked project into your local IDE.

This will, for example, allow you to set up your own regression tests on GitHub.

The approach will automatically download MATSim (as a so-called Maven articfact), allow you to browse
the source code, and keep you up-to-date with releases or snapshots. It will not allow you to modify
the existing MATSim code—which, in most cases, also should not be necessary: it is preferred that you
contact the developers in such situations and we will try to help or implement missing extension points.

Many Java code examples, along the lines discussed in Section 3.2.3, are provided at https://github.
com/matsim-org/matsim-code-examples.

Standalone The “Standalone” version is targeted to users who are not fluent with an IDE (e.g. Eclipse)
and Java, and want to use MATSim by editing the input files, including config.xml. A basic Graphical
User Interface (GUI) is provided.

You will need the official MATSim release, a zip file (usually designated with the version number
matsim-yy.yy.yy.zip), that includes everything required to run it. It can be downloaded following
the corresponding links under http://matsim.org/downloads. Unzip results into the MATSim directory
tree.

Maven One can use MATSim as an Maven plugin; both release versions and snapshots are available.
See again http://matsim.org/downloads for more information.

Again, some Java programs, along the lines discussed in Section 3.2.3, are provided in the so-called
code examples project on GitHub, see https://github.com/matsim-org/matsim-code-examples.

Browsing the source code If you just want to look at code without downloading and installing a zip file:
On GitHub, the root of the MATSim directory tree is at https://github.com/matsim-org/matsim-libs.

Alternatively, if you have installed the MATSim example project with Maven, then the MATSim sources
are automatically available inside the IDE.

Other options http://matsim.org/downloads describes additional options, including how to obtain
older or newer versions or how to add extensions.

2.1.2 Running MATSim

GUI from jar file MATSim can be started by double-clicking the MATSim Java ARchive (JAR) file (since
MATSim version 0.8). A minimal GUI, as shown in Figure 2.1, opens and the MATSim run can be

1. configured—by choosing a configuration file as indicated by the “Choose” button—, and
2. started—by clicking on “Start MATSim”.

If the output directory (as defined in the config file, see below) is already there, it needs to be deleted
before the run can be successfully started; there is a “Delete” button to achieve this.

After the run has successfully finished, the output directory can be opened in a file browser with
the “Open” button. Output files, such as output_network.xml.gz and output_events.xml.gz, can be
dragged-and-dropped into the Via visualization software, and simulated traffic can be played back.1

1Via is commercial, see https://www.simunto.com/via. A free license is available for up to 500 MATSim agents. An
alternative is On The Fly Visualizer (OTFVis) (Chapter 7), but it is not officially supported, and more difficult to use.

April 25, 2024 10

https://github.com/matsim-org/matsim-code-examples
https://github.com/matsim-org/matsim-code-examples
http://matsim.org/downloads
http://matsim.org/downloads
https://github.com/matsim-org/matsim-code-examples
https://github.com/matsim-org/matsim-libs
http://matsim.org/downloads
https://www.simunto.com/via

Chapter 2. Let’s Get Started 2.1. Setting Up and Running MATSim

Figure 2.1: MATSim GUI.

GUI from IDE Alternatively, you can run the MATSimGUI class from the IDE.

Without GUI from IDE MATSimGUI points to RunMatsim. One can instead just run RunMatsim. Sorting
out path names is a bit more challenging, but it is more convenient in the long run.

2.1.3 Configuring MATSim

MATSim is configured in the config file. It builds the connection between the user and MATSim and
contains a list of settings that influence how the simulation behaves.

The structure of the config file is as follows:

• At the highest level, there are config groups. They are named “modules” in the config file:
<module name="network">

...

or
<module name="controler">

...

• Inside each config group, there can be

– Key-value pairs, such as
<param name="firstIteration" value="0" />

– Parameter sets, such as
<parameterset type="activityParams">

<param name="activityType" value="home"/>
<param name="typicalDuration" value="12:00:00" />
...

</parameterset >

Parameter sets are typically used if there are more than one grouped sets of parameters of
the same type. For example, there are several sets of activity parameters.

April 25, 2024 11

Chapter 2. Let’s Get Started 2.1. Setting Up and Running MATSim

Figure 2.2: MATSim GUI tools.

The list of available parameters and valid parameter values keeps changing over time. For a list of all
available settings available with the version you are working with, run the “Create Default config.xml”
MATSim GUI tool, see Fig. 2.2.2 This will create a new config file, containing all available parameters,
along with their default values and often an explanatory comment, making it easier to see what settings
are available. To use and modify specific settings, lines with their corresponding parameters can be
copied to the config file, specific to the scenario to be simulated, and the parameter values can be
modified in that file.

A fairly minimal config file running only the initial (“zeroth”) iteration contains the following information:
<module name="network">

<param name="inputNetworkFile" value="<path -to -network -file >" />
</module >

<module name="plans">
<param name="inputPlansFile" value="<path -to -plans -file >" />

</module >

<module name="controler">
<param name="firstIteration" value="0" />
<param name="lastIteration" value="0" />

</module >

<module name="planCalcScore" >
<parameterset type="activityParams" >

<param name="activityType" value="h" />
<param name="typicalDuration" value="12:00:00" />

</parameterset >
<parameterset type="activityParams" >

<param name="activityType" value="w" />
<param name="typicalDuration" value="08:00:00" />

</parameterset >
</module >

For a working example, see https://github.com/matsim-org/matsim-example-project/tree/master/

scenarios/equil/config.xml.

There are two useful capabilities for file names:

• Most file names are relative to the directory of the config file.3

• Input file names can be given as URL.

In the example, supply is provided by the network and demand by the plans file. Typical input data is
described in Section 2.3.1. The specification that the first and last iteration are the same means that no
replanning of the demand is performed. What is executed is the mobsim (Figure 1.1), followed by each
executed plan’s performance scoring. To function, the scoring needs to know, from the config file, all
activity types used in the plans and the typical duration for each activity type.

2Outside the MATSim GUI, this can be achieved by running the following command from the command line:

java -cp /path/to/matsim.jar org.matsim.run.CreateFullConfig fullConfig.xml
3Since MATSim version 0.9.x. The “most” refers to the fact that this needs to be manually implemented, and as a result

this sometimes has not been done yet, in particular in contribs. If you encounter such a case, please request this feature via
https://matsim.org/faq.

April 25, 2024 12

https://github.com/matsim-org/matsim-example-project/tree/master/scenarios/equil/config.xml
https://github.com/matsim-org/matsim-example-project/tree/master/scenarios/equil/config.xml
https://matsim.org/faq

Chapter 2. Let’s Get Started 2.2. An Example Scenario

Further configuration possibilities are described in Chapter 4.

2.2 An Example Scenario

The MATSim example project comes with an example scenario named equil in the folder
examples/scenarios/equil,4 containing these files: config.xml, network.xml, plans100.xml, and
plans2000.xml.gz, containing, respectively, 100 and 2000 persons with their daily plans, using car mode
only. A tiny population containing only 2 persons (plans2.xml), one using public transport, the other
using car mode, is also provided. An example for count data is also found in the folder (counts100.xml).

In addition, there is also a file with 100 trips (plans100trips.xml), i.e., demand going only from one
location to another, using a dummy activity type at each end. This is provided to show that MATSim can
also be run as a fully trip-based approach, without considering any activities. Clearly, it loses some of
its expressiveness, but the basic concepts, including route and even departure time adaptation, still
work in exactly the same way.

The scenario network is shown in Figure 2.3.

Figure 2.3: Equil scenario network.

The following lines explain the scenario by discussing the most important sections from the config file
config.xml.

”strategy” section of the config file As shown in the config file excerpt below, this scenario uses replan-
ning. In each iteration, 10% of the agents reroute one of their plans (module ReRoute). The remaining
90% select their highest score plan for re-execution in the current iteration (module BestScore). Plans
are deleted from the agent’s memory if it is full, defined by maxAgentPlanMemorySize. By default, the
plan with the lowest score is removed; this is configurable (see Section 22.6).
<module name="strategy">

<param name="maxAgentPlanMemorySize" value="5" />
<!-- (0 means unlimited) -->

<parameterset type="strategysettings" >

4See https://github.com/matsim-org/matsim-example-project/tree/master/scenarios/equil.

April 25, 2024 13

https://github.com/matsim-org/matsim-example-project/tree/master/scenarios/equil

Chapter 2. Let’s Get Started 2.3. Building and Running a Basic Scenario

<param name="strategyName" value="ReRoute" />
<param name="weight" value="0.1" />

</parameterset >

<parameterset type="strategysettings" >
<param name="strategyName" value="BestScore" />
<param name="weight" value="0.9" />

</parameterset >

</module >

”planCalcScore” section of the config file The section planCalcScore defines parameters used for scoring,
explained in Chapter 10. As seen in the example, two activity types, h (home) and w (work), are
specified. All activity types contained in the population file (cf. Section 2.3.1.2) must be defined in the
planCalcScore section of the config file.
<module name="planCalcScore" >

<parameterset type="activityParams" >
<param name="activityType" value="h" />
<param name="typicalDuration" value="12:00:00" />

</parameterset >
<parameterset type="activityParams" >

<param name="activityType" value="w" />
<param name="typicalDuration" value="08:00:00" />

</parameterset >
</module >

”controler” section of the config file The scenario is run for 10 iterations, writes the output files to
./output/equil (Section 2.3.2) and uses QSim as the mobsim (more on mobsims in Sections 1.3, 4.4
and 11).
<module name="controler">

<param name="outputDirectory" value="./ output/equil" />
<param name="lastIteration" value="10" />
<param name="mobsim" value="qsim" />

</module >

Visualization Simulation results can be visualized with Via (Chapter 5) or OTFVis (Chapter 7).

2.3 Building and Running a Basic Scenario

This section provides information on typical input data files used for a MATSim experiment, as well
as the standard output files generated. The section starts with typical input and output data. It then
moves on to units, conventions and coordinate systems used in MATSim, followed by hints on practical
data requirements. The section is concluded by pointers to open, i.e. freely available scenario input
data.

2.3.1 Typical Input Data

Minimally, MATSim needs the files

• config.xml, containing the configuration options for MATSim and presented above in Section 2.1.3,

• network.xml, with the description of the (road) network, and

• population.xml, providing information about travel demand, i.e., list of agents and their daily
plans.

Thus, population.xml and network.xml might get quite large. To save disk space, MATSim supports
reading and writing data in a compressed format. MATSim uses GZIP-compression for this. Thus, many

April 25, 2024 14

Chapter 2. Let’s Get Started 2.3. Building and Running a Basic Scenario

file names have the additional suffix .gz, as in population.xml.gz. MATSim recognizes whether files
are compressed, or should be written compressed, based on file name.

In more detail, the network and population files resemble the following; for the config file, see Sec-
tion 2.1.3 above.

2.3.1.1 Network file

Network is the infrastructure on which agents (or vehicles) can move around. The network consists
of nodes and links (in graph theory, also called vertices and edges). A simple network description
in MATSim’s Extensible Markup Language (XML) data format could contain approximately the following
information:
<network name="example network">

<nodes >
<node id="1" x="0.0" y="0.0"/>
<node id="2" x="1000.0" y="0.0"/>
<node id="3" x="1000.0" y="1000.0"/>

</nodes >
<links >

<link id="1" from="1" to="2" length="3000.00" capacity="3600"
freespeed="27.78" permlanes="2" modes="car" />

<link id="2" from="2" to="3" length="4000.00" capacity="1800"
freespeed="27.78" permlanes="1" modes="car" />

<link id="3" from="3" to="2" length="4000.00" capacity="1800"
freespeed="27.78" permlanes="1" modes="car" />

<link id="4" from="3" to="1" length="6000.00" capacity="3600"
freespeed="27.78" permlanes="2" modes="car" />

</links >
</network >

For a working example, see under https://github.com/matsim-org/matsim-example-project/tree/

master/scenarios/equil.

Each element has an identifier id. Nodes are described by an x and a y coordinate value (also see
Sections 2.3.4.3 and 8.1). Links have more features; the from and to attributes reference nodes and
describe network geometry. Additional attributes describe traffic-related link aspects:

• The length of the link, typically in meters (see Section 2.3.4).

• The flow capacity of the link, i.e., number of vehicles that traverse the link, typically in vehicles
per hour.

• The freespeed is the maximum speed that vehicles are allowed to travel along the link, typically
in meters per second.

• The number of lanes (permlanes) available in the direction specified by the ’from’ and ’to’ nodes.

• The list of modes allowed on the link. This is a comma-separated list, e.g.,
modes="car, bike, taxi".

All links are uni-directional. If a road can be traveled in both directions, two links must be defined with
reversed to and from attributes (see links with id 2 and 3 in the listing above).

2.3.1.2 Population file = plans file

File Format MATSim travel demand is described by the agents’ daily plans. The full set of agents is also
called the population, hence the file name population.xml. Alternatively, plans.xml is also commonly
used in MATSim, as the population file essentially contains a list of daily plans.

The population contains the data in a hierarchical structure, as shown in the following example. This
example illustrates the data structure; minimal input files need less information, as illustrated later.
<population >

April 25, 2024 15

https://github.com/matsim-org/matsim-example-project/tree/master/scenarios/equil
https://github.com/matsim-org/matsim-example-project/tree/master/scenarios/equil

Chapter 2. Let’s Get Started 2.3. Building and Running a Basic Scenario

<person id="1">
<plan selected="yes" score="93.2987721">

<act type="home" link="1" end_time="07:16:23" />
<leg mode="car">

<route type="links">1 2 3</route >
</leg>
<act type="work" link="3" end_time="17:38:34" />
<leg mode="car">

<route type="links">3 1</route >
</leg>
<act type="home" link="1" />

</plan>
</person >
<person id="2">

<plan selected="yes" score="144.39002">
...

</plan>
</person >

</population >

For a working example, see under https://github.com/matsim-org/matsim-example-project/tree/

master/scenarios/equil.

The population contains a list of persons, each person contains a list of plans, and each plan contains
a list of activities and legs.

Exactly one plan per person is marked as selected. Each agent’s selected plan is executed by the
mobility simulation. During the replanning stage, a different plan might become selected. A plan can
contain a score as attribute. The score is calculated and stored in the plan after its execution by the
mobility simulation during the scoring stage.

The list of activities and legs in each plan describe each agent’s planned actions. Activities are assigned
a type and typically have—except for the last activity in a daily plan—a defined end time. There are
some exceptions where activities have a duration instead of an end time. Such activities are often
automatically generated by routing algorithms and are not described in this book. To describe the
location where an activity takes place, the activity is either assigned a coordinate by giving it an x and y

attribute value, or it has a link assigned, describing from which link the activity can be reached. Because
the simulation requires a link attribute, Controler calculates the nearest link for a given coordinate when
the link attribute is missing.

A leg describes how an agent plans to travel from one location to the next; each leg must have a
transport mode assigned. Optionally, legs may have an attribute, trav_time, describing the expected
travel time for the leg. For a leg to be simulated, it must contain a route. The format of a route depends
on the mode of a leg. For car legs, the route lists the links the agent has to traverse in the given order,
while for transit legs, information about stop locations and expected transit services are stored. MATSim
automatically computes initial routes for initial plans that do not contain them.

An agent starts a leg directly after the previous activity (or leg) has ended. The handling of the agent in
the mobsim depends on the mode. By default, car and transit legs are well-supported by the mobsim.
If the mobsim encounters a mode it does not know, it defaults to teleportation. In this case, an agent is
removed from the simulated reality and re-inserted at its target location after the leg’s expected travel
time has passed.

A Minimal Population File The population data format is one of the most central data structures in
MATSim and might appear a bit overwhelming at first. Luckily, to get started, it is only necessary to
know a small subset. A population file needs, approximately, only the following information:
<population >

<person id="1">
<plan>

<act type="home" x="5.0" y="8.0" end_time="08:00:00" />
<leg mode="car" />
<act type="work" x="1500.0" y="890.0" end_time="17:30:00" />

April 25, 2024 16

https://github.com/matsim-org/matsim-example-project/tree/master/scenarios/equil
https://github.com/matsim-org/matsim-example-project/tree/master/scenarios/equil

Chapter 2. Let’s Get Started 2.3. Building and Running a Basic Scenario

<leg mode="car" />
<act type="home" x="5.0" y="8.0" />

</plan>
</person >
<person id="2">

...
</person >

</population >

See plans-minimal.xml in matsim-code-examples for a working example.

The following items can be used for simplification:

• Each person needs not more than one plan.

• The plan does not have to be selected or have a score.

• Activities can be located just by their coordinates.

• Activities should have a somewhat reasonable end-time.

• Legs need only a mode, no routes.

When a simulation is started, MATSim’s Controler will load such a file and then automatically assign
the link nearest to each activity and calculate a suitable route for each leg. This makes it easy to get
started.

2.3.2 Typical Output Data

MATSim creates output data that can be used to analyze results as well as to monitor the current
simulation setup progress. Some of the files summarize a complete MATSim run, while others are
created for a specific iteration only. The first type of files goes directly to the output folder’s top level,
which can be specified in the controler section of the config file. The other files are stored in iteration-
specific folders ITERS/it.{iteration number}, which are continuously created in the output folder. For
some files (typically for large ones, such as population), the output frequency can be specified in the
config file. They then go only to the respective iteration folders. The files summarizing the complete
MATSim run are built ’on the fly’, i.e., after every iteration, currently computed iteration values are
stored, allowing continuous monitoring of the run. Some files are created by default (such as the score
statistics files); others need to be triggered by a respective configuration file section (such as count
data files).

The following output files are continuously built up to summarize the complete run.

Log File: During a MATSim run, a log file is printed containing information you might need later for your
analyses, or in case a run has crashed.

Warnings and Errors Log File: Sometimes, MATSim identifies problems in the simulation or its configura-
tion; it will then write warning and error messages to the log file. Because the log file contains so
much information, these warnings can be overlooked. For this reason, a separate log file is gen-
erated in the run output directory, containing only warnings and error messages. It is important
to check this file during/after a run for possible problems.

Score Statistics: Score statistics are available as a picture (scorestats.png), as well as a text file
(scorestats.txt). They show the average best, worst, executed and overall average of all agents’
plans for every iteration. An example score plot is shown in Figure 1.2.

Leg Travel Distance Statistics: Leg travel distance statistics (files traveldistancestats.png and
traveldistancestats.txt) are comparable to score statistics, but instead, they plot travel dis-
tance.

April 25, 2024 17

https://github.com/matsim-org/matsim-code-examples/search?q=filename:plans-minimal.xml

Chapter 2. Let’s Get Started 2.3. Building and Running a Basic Scenario

ActivityEndEvent

PersonDepartureEvent

VehicleEntersTrafficEvent
(old: Wait2LinkEvent)

LinkLeaveEvent LinkEnterEvent LinkLeaveEvent LinkEnterEvent

ActivityStartEvent

PersonArrivalEvent

PersonLeavesVehicleEventPersonEntersVehicleEvent

VehicleLeavesTrafficEvent

Figure 2.4: Mobsim events.

Stopwatch: The stopwatch file (stopwatch.txt) contains the computer time (so-called wall clock time)
of actions like replanning or the execution of the mobsim for every iteration. This data is helpful
for computational performance analyses, e.g., how long does replanning take compared to the
mobility simulation?

The following output files are created for specific iterations:

Events: Every action in the simulation is recorded as a MATSim event, be it an activity start or change
of network link; see Fig. 2.4. Each event possesses one or multiple attributes. By default, the
time when the event occurred is included. Additionally, information like the ID of the agent
triggering the event, or the link ID where the event occurred, could be included. The events file
is an important base for post-analyses, like the visualizers. Events are discussed in detail in
Section 21.5.

Plans: At configurable iterations, the current state of the population, with the agents’ plans, is printed.
The final iteration’s plans are also generated on the top level of the output folder.

Leg Histogram: In every iteration, a leg histogram is plotted. A leg histogram depicts the number of
agents arriving, departing or en route, per time unit. Histograms are created for each transport
mode and for the sum of all transport modes. Each file starts with the iteration number and ends
with the transport mode (e.g., 1.legHistogram_car.png or 1.legHistogram_all.png). A text file
is also created (e.g., 1.legHistogram.txt), containing the data for all transport modes.

Trip Durations: For each iteration, a trip durations text file (e.g., 1.tripdurations.txt), listing number
of trips and their durations, on a time bin level for each activity pair (e.g., from work to home or
from home to shopping), is produced.

Link Stats: In each iteration, a link stats file containing hourly count values and travel times on every
network link is printed. Link stats are particularly important for comparison with real-world count
data, as introduced in Section 10.4.

2.3.3 Data Requirements

April 25, 2024 18

Chapter 2. Let’s Get Started 2.3. Building and Running a Basic Scenario

2.3.3.1 Population and Activity Schedules

As discussed, MATSim needs a file with initial plans as input. All choice dimensions that will not
modified later through MATSim’s day-to-day learning have to be exogenously estimated here. As of
2022, MATSim has modules for route choice, mode choice, (departure) time choice, and secondary
activity location choice, and in consequence everything else needs to be exogenously provided. This
concerns, in particular, each person’s sequence of activities.

For population generation, two possibilities exist: the comfortable way is to translate a full population
census; the more demanding way is to generate a synthetic population (e.g., Guo and Bhat, 2007),
based on sample or structure surveys. For MATSim, both methods have been used (e.g., Swiss Federal
Statistical Office (BFS), 2000; Müller, 2011).

Travel demand is often derived from surveys: for Switzerland, from the microcensus (Swiss Federal Sta-
tistical Office (BFS), 2006). Newer data sources, such as Global Positioning System (GPS) or smartphone
travel diaries, can be used as well (e.g., Zilske and Nagel, 2015).

A critical topic in demand and population generation is workplace assignment, as commuting traffic is
still a major issue, particularly during peak hours. Switzerland’s full census work location was surveyed
at municipality level. Such comfortable data bases are rare, however.

Having generated the residential population of the study area, additional demand components might be
necessary, for example, cross-border and freight traffic. As these components often cannot be endoge-
nously modeled, MATSim offers the feature to handle different subpopulations differently (Section 4.6).
One can specify that border-crossing agents, for example, are not allowed to make destination choices
within the study area, or that freight agents are not allowed to change their delivery activity to a leisure
activity.

2.3.3.2 Network

In simulation practice, two different network types are used: planning networks and navigation networks
(compare Swiss examples in Figure 2.4(a) and Figure 2.4(b) for the Zürich region). The former are
leaner and often serve for initial explorative simulation runs, while the latter are often used for policy
runs, usually offering far more details, such as bike and even pedestrian links. Data are available from
official sources like federal offices, free sources, such as OpenStreetMap (OSM), and commercial sources,
including navigation network providers.

2.3.4 Units, Conventions, and Coordinate Systems

2.3.4.1 Units

MATSim tries to make few assumptions about actual units, but it is sometimes necessary for certain
estimates. In general, MATSim expects similar types of variables (e.g., all distances) to be in the same
unit wherever they are used. In the following short overview, the most important (expected) units are
listed.

Distance Distance units are for example used in links’ length. They should be specified in the same
unit that the coordinate system uses, allowing MATSim to calculate beeline distances. As the much used
Universal Transverse Mercator (UTM) projected coordinate systems (see Section 2.3.4.3) use meters as
the unit of distance, this is the most commonly used distance unit in MATSim.

Time MATSim supports an hour:minute:second notation in several places, but internally, it uses sec-
onds as the default time unit. This implies, for example, that link speeds must be specified in distance

April 25, 2024 19

Chapter 2. Let’s Get Started 2.3. Building and Running a Basic Scenario

(a) Planning network.

(b) Navigation network.

Figure 2.5: Zürich networks.

per second, typically meters per second. One notable exception to this rule are scoring parameters,
where MATSim expects values per hour.

Money Money is unit-free. Units are implicitly given by the marginal utility of money (cf. Equa-
tion (10.5) below). Thus, when one moves from Germany to Switzerland, the parameter βm must be
changed from “utility per Euro” to “utility per Swiss Franc”.

2.3.4.2 Conventions for Identifiers

MATSim uses IDs at many places. These identifiers can be arbitrary strings, with the following exceptions:
IDs should not contain any whitespace characters (incl. tabs, new lines, etc.) or commas, semicolons,
etc., because those characters are typically used for separating different IDs from each other on ID lists.

2.3.4.3 Coordinate Systems

Preparing Your Data in the Appropriate Coordinate System In several input files, you need to specify co-
ordinates, e.g., for network nodes. For the time being, we strongly advise not to use WGS84 coordinates
– i.e., GPS coordinates) – or any other spherical coordinates (coordinates ranging from −180 to +180 in
west-east direction and from −90 to +90 in south-north direction). MATSim has to calculate distances
between two points in several locations of the code. Calculation of distances between spherical coordi-
nates is complex and potentially slow. Instead, MATSim uses the simple Pythagoras theorem, but this

April 25, 2024 20

Chapter 2. Let’s Get Started 2.3. Building and Running a Basic Scenario

requires Cartesian coordinate system coordinates. Thus, we emphatically recommend using a Cartesian
coordinate system with MATSim, preferably one where the distance unit corresponds to one meter.

Many countries and regions have custom coordinate systems defined, optimized for local usage. It
might be best to ask Geographic Information System (GIS) specialists in your region of interest for the
most commonly used coordinate system there and use that for your data.

If you have no information about what coordinate system is used in your region, it might be best to use
the UTM coordinate system. This system divides the world into multiple bands, each six degrees wide,
and separated into a northern and southern part, which it calls UTM zones. For each zone, an optimized
coordinate system is defined. Choose the UTM zone for your region (Wikipedia has a good map showing
the zones; an even better alternative is https://www.geoplaner.com/) and use its coordinate system.

Coordinate system for the MATSim run For some operations, MATSim must know the coordinate system
where your data is located. For example, some analyses may create output to be visualized in Google
Earth or by Quantum GIS (QGIS). The coordinate system used while running MATSim can be specified in
the config file:
<module name="global">

<param name="coordinateSystem" value="EPSG :32608" />
</module >

You have multiple ways to specify the coordinate system you use. The easiest one is to use the
so-called “European Petroleum Survey Group (EPSG) codes”. Most of the commonly used coordinate
systems have been standardized and numbered. The EPSG code identifies a coordinate system and can
be directly used by MATSim. To find the correct EPSG code for your coordinate system (e.g., for one of
the UTM zones), the website http://www.spatialreference.org is useful. Search on this website for
your coordinate system, e.g., for “WGS 84 / UTM Zone 8N” (for the northern-hemisphere UTM Zone 8),
to find a list of matching coordinate systems along with their EPSG codes (in this case EPSG:32608). As
an alternative, MATSim can also parse the description of a coordinate system in the Well-Known Text
(WKT) format.

Coordinate system for input files given in the input file One can specify the coordinate system directly in
the each input file. The syntax approximately is
...
<network >

<attributes >
<attribute name="coordinateReferenceSystem"

class="java.lang.String">EPSG :31468 </attribute >
</attributes >
...

The output_... files normally contain such an entry, so one can check there. This also works for input
files that have a different coordinate system than the global coordinate system described above, and
it provides the same functionality as the inputCRS entry in the config file.

Coordinate system for input files given in the config Since release 0.8.x, MATSim accepts input data in
coordinate systems different from the internal coordinate system. This is achieved by settings of type
<module name="network">

...
<param name="inputCRS" value="EPSG :12345" />

</module >

This also works for other input files, e.g., plans files. All coordinates from that file are then, during
input, transformed into the coordinate system given in the global section of the config.

2.3.5 Open Scenario Input Data

April 25, 2024 21

https://www.geoplaner.com/
http://www.spatialreference.org

Chapter 2. Let’s Get Started 2.4. MATSim Survival Guide

2.3.5.1 MATSim examples utils

A “trick” to get access to illustrative scenario data is something like the following:

URL context = org.matsim.examples.ExamplesUtils.getTestScenarioURL("equil");

URL url = IOUtils.extendUrl(context , "config.xml");

Config config = ConfigUtils.loadConfig(url);

See RunMatsimFromExamplesUtils.java in matsim-example-project.

This works with the following entry in pom.xml:5

<dependency >
<groupId >org.matsim </groupId >
<artifactId >matsim -examples </artifactId >
<version >${ matsim.version}</version >
<!-- <scope >test</scope>-->

</dependency >

Those lines are already included in matsim-example-project.

The scenarios can be found here: https://github.com/matsim-org/matsim-libs/tree/master/

examples/scenarios.

2.3.5.2 Pre-packaged scenarios

Pre-packaged scenarios can be found under https://matsim.org/open-scenario-data.

That web page points to several places, one of them https://github.com/matsim-scenarios.

2.4 MATSim Survival Guide

There are many options and possibilities available with MATSim, and finding them can be a daunting
exercise. Here are a couple of recommendations, derived from our own frequent use of the system.

1. Since version 0.9.x, most file paths in the config file are relative to the directory of the config file.

This should, in general, make the handling of file paths much easier than in the past. However,
older config files may not work any more.

Somewhat unexpectedly, in most cases Uniform Resource Locators (URLs) can be used as input
path names.

2. Always start and test with a small example.

3. Always test large scenarios with one percent runs first (e.g., a randomly drawn subsample of
your initial demand). The MATSim GUI (Figure 2.1) allows creating sample populations with the
command Tools...Create Sample Population.

As described in Section 4.4, this requires adaptation of parameters, in particular, the mobsim’s
flowCapacityFactor and storageCapacityFactor factors. As shown in Part II, Section 10.4, sample
scenarios also require parameter adaption for count data comparisons.

4. If your set-up does not work any more, immediately go back to a working version and proceed
from there in small steps.

5. Check logfileWarningErrors.log.

6. Check the comments that are attached to the config file options.

One finds them in the file output_config.xml.gz, or near the beginning of logfile.log.

5This dependency should normally only be in the test scope, as indicated by the commented-out line. The reason is that
otherwise it will be passed on to all inheriting projects. However, for a “leaf” project (on which no other projects depend), it
is fine to have this in the main scope.

April 25, 2024 22

https://github.com/matsim-org/matsim-libs/tree/master/examples/scenarios
https://github.com/matsim-org/matsim-libs/tree/master/examples/scenarios
https://matsim.org/open-scenario-data
https://github.com/matsim-scenarios

Chapter 2. Let’s Get Started 2.4. MATSim Survival Guide

7. Try setting as few config file options as possible.

This has two advantages: (i) Except for the deliberately set options, your simulation will move
along with changed MATSim defaults, and thus with what the community currently considers the
best configuration. (ii) You will not be affected by changes in the config file syntax as long as
they are different from your own settings.

The output directory contains an output_config_reduced.xml, which is a starting point for such
a reduced config file.

8. Use the javadoc documentation that is available from your IDE.

9. Search for the latest tutorial via http://matsim.org/docs.

10. Initially run more complicated modes as teleportation.

You can add them as “real” modes later.

11. Initially run without extensions.

You should add them one by one and verify that they are doing what they should.

April 25, 2024 23

http://matsim.org/docs

3
Available Functionality and How to Use It

Authors: Andreas Horni, Kai Nagel

initial

demand
analyses execution scoring

replanning

network editors

freightChainsFromTD

scoring

scenario

population

households

controler

events

parallel computing

global

travel time calculator

psim

matsim4urbansim

destination

innovation

freight

car sharing

joint trips

parking

electric vehicles

road pricing

cadyts

wagonSim

withinday

public transport

DVRP

evacuation

counts

Via

OTFVis

emissions

accessibility

decision

support

link stats

analysis

time innovation

route innovation

mode innovation

selectors

matrix based pt router

network

facilities

vehicles

mobsims

multimodal

signals

lanes

In this chapter you will learn about possibilities to extend and customize MATSim through provided
functionality. Chapter 21 describes how you can hook your own extensions into MATSim.

3.1 MATSim Modularity

MATSim follows a modular concept, but a “module” is not a very specific term;1 thus, modules can exist
at many levels in a software framework. Also in MATSim, a range of different functionality types, such
as sets of configuration options, replanning components, contributions, or even external tools,2 are
sometimes described as modules. It is important to understand the different levels of access stemming
from the generally modular architecture.

1 According to the Merriam-Webster (http://www.merriam-webster.com), a module is “one of a set of parts that can be
connected or combined to build or complete something” or more specifically “a part of a computer or computer program that
does a particular job”.

2Standalone tools such as the MATSim network editor for Java Open Street Map Editor (JOSM), or the visualizer Via.

25

http://www.merriam-webster.com

Chapter 3. Available Functionality and How to Use It 3.2. Levels of Access

3.2 Levels of Access

MATSim currently provides five levels of access, described in the following five sections.

3.2.1 Using MATSim through the GUI with config, network, and population only

To use only the core, one needs to do the following (see Section 2.1):

• Download a MATSim release or a nightly build, by following the respective links at http://matsim.
org/downloads.

• Obtain a network file and an initial plans file. Small versions can be typed by hand; larger versions
should be generated automatically by some computational method.

• Write or edit a config file.

• Click on the MATSim jar file3 and follow the instructions.

We think that the MATSim core is already quite powerful; for example, synthetic persons already follow
full daily plans with a full daily scoring function; thus, opening times for activity types, departure time
choice and schedule delay can be investigated.

3.2.2 Using MATSim through the GUI with additional files

Some additional functionality can be used from the GUI by providing additional files, and setting config-
uration switches accordingly. This concerns most importantly explicit simulation of other vehicles than
car (Chapter 11), and schedule-based public transit (Chapter 12).

3.2.3 Writing “Scripts in Java”

If using the MATSim main distribution is not sufficient, the currently recommended way to proceed is to
learn how to write MATSim “Scripts in Java”. This means to use Java as a scripting language for MATSim;
see Section 3.3 for a discussion. The syntax is roughly:
... main(...) {

// construct the config object:

Config config = ConfigUtils.xxx (...) ;

config.xxx (). setYyy (...) ;

...

// load and adapt the scenario object:

Scenario scenario = ScenarioUtils.loadScenario(config) ;

scenario.getXxx (). doYyy (...) ; // (*)

...

// load and adapt the controler object:

Controler controler = new Controler(scenario) ;

controler.doZzz (...) ; // (**)

...

// run the iterations:

controler.run() ;

}

For a working example, see https://github.com/matsim-org/matsim-example-project; this will also
contain a valid pom.xml, which pulls in all library dependencies including MATSim itself via Maven.

3This works since the 0.8.x release.

April 25, 2024 26

http://matsim.org/downloads
http://matsim.org/downloads
https://github.com/matsim-org/matsim-example-project

Chapter 3. Available Functionality and How to Use It 3.2. Levels of Access

Extension points, especially at (*) and (**), are described in more detail in Chapter 21. Clearly, one
needs some Java and IDE experience for this.

Examples for such MATSim scripts-in-java can be found at https://github.com/matsim-org/

matsim-code-examples. Note that there are different branches, corresponding to the different MATSim
versions.

A useful snippet is
Config config;

if (args==null || args.length ==0 || args [0]== null){

config = ConfigUtils.loadConfig("scenarios/equil/config.xml");

} else {

config = ConfigUtils.loadConfig(args);

}

config.controler (). setOverwriteFileSetting(

OutputDirectoryHierarchy.OverwriteFileSetting.deleteDirectoryIfExists);

3.2.4 Using Contribs or External Extensions

There are MATSim extensions that are not part of the main distribution. They come in two flavours:

• Extensions located in the contrib section of the MATSim repository.

• Extensions that are external to the MATSim repository.

MATSim extensions can be found via http://matsim.org/extensions.

External extensions tend to be more independent from the MATSim main distribution. This can be a
result of more independent tasks—such as input generation or output analysis/visualization—or of more
independent API design.

Both for contribs and for external extensions, one needs to read their own documentation for information
about their usage. Such documentation can be found via http://matsim.org/extensions.

The MATSim core team recommends again to start from https://github.com/matsim-org/

matsim-example-project for using contribs or external extensions, since both types of extensions can
be used by adding them into the pom.xml and let Maven do the dependency management.

Clearly, once more this means that one needs to have some Java and IDE experience.

Illustration: OTFVis Roughly:
... main(...) {

Config config = ConfigUtils.xxx (...) ;

Scenario scenario = ScenarioUtils.loadScenario(config) ;

Controler controler = new Controler(scenario) ;

controler.addOverridingModule(new OTFVisLiveModule ()) ;

// ^^

controler.run() ;

}

This should open OTFVis, an interactive visualizer attached directly to each mobsim run.

3.2.5 Writing Your Own Extensions

If the existing extensions are not sufficient to plug your own study together, the next option is
to write your own extension. Again, we recommend starting from https://github.com/matsim-org/

matsim-example-project. Also, one should use the extension points described in Chapter 21, since this
is the only way an extension can later become a contribution.

April 25, 2024 27

https://github.com/matsim-org/matsim-code-examples
https://github.com/matsim-org/matsim-code-examples
http://matsim.org/extensions
http://matsim.org/extensions
https://github.com/matsim-org/matsim-example-project
https://github.com/matsim-org/matsim-example-project
https://github.com/matsim-org/matsim-example-project
https://github.com/matsim-org/matsim-example-project

Chapter 3. Available Functionality and How to Use It 3.3. The Ideas Behind this Setup

initial

demand
analyses execution scoring

replanning

network editors

freightChainsFromTD

scoring

scenario

population

households

controler

events

parallel computing

global

travel time calculator

psim

matsim4urbansim

destination

innovation

freight

car sharing

joint trips

parking

electric vehicles

road pricing

cadyts

wagonSim

withinday

public transport

DVRP

evacuation

counts

Via

OTFVis

emissions

accessibility

decision

support

link stats

analysis

time innovation

route innovation

mode innovation

selectors

matrix based pt router

network

facilities

vehicles

mobsims

multimodal

signals

lanes

Figure 3.1: MATSim functionality.

3.3 The Ideas Behind this Setup

The setup, as described above, arose from the observation that an-ever growing monolithic MATSim
would eventually overwhelm the MATSim team and its core developers group. Therefore, a set-up was
sought allowing them to concentrate on central infrastructure, while specific functionality like road
pricing, multimodal simulations, signals, additional choice dimensions, or analysis modules could be
written and contributed by the community. Clearly, a plug-in architecture had to be the solution, but it
took (and still takes) time and effort to make the extension points sufficiently capable and robust.

At the same time, MATSim is a research platform; research investigates innovative questions, which
often means that the questions were not foreseen when the code was designed. Quite often, scripting
languages are the solution to such problems; for example, python is allowed in QGIS,4 Verkehr In
Städten – UMlegung (VISUM),5 Equilibre Multimodal Multimodal Equilibrium (EMME), or Simulation of
Urban Mobility (SUMO) (via the TraCI interface)6 for plug-ins. SCAlable LAnguage (Scala) was discussed
for MATSim, but ultimately, it was decided to just use Java itself as the scripting language, with the
advantage that users between development and MATSim application do not need to learn two languages.
In addition, the Technische Universität (TU) Berlin team can continue to teach Java both as an entry
point to MATSim and as a general professional skill.

April 25, 2024 28

Chapter 3. Available Functionality and How to Use It 3.4. An Overview of Existing MATSim Functionality

3.4 An Overview of Existing MATSim Functionality

Figure 3.1 shows where common MATSim modules are coupled with the MATSim loop. Some modules
have a single connection point (shown around the loop, connected to the respective loop element),
while others have multiple connection points (shown in the middle of the circle), and yet others work
on a global range (shown on the left upper and lower corners).

Technical details for module usage can be found starting from http://matsim.org/extensions.

As a result of the distributed and project- and dissertation-driven MATSim contribution process (see
Chapter 22), modules are often implemented for a specific practical purpose, leading to limitations of the
respective module. For example, modules might only work for a specific mode, or for a defined calling
order. Normally, additional effort is needed to generalize the module; in consequence, the combination
of a specific module with other functionality is often not a straight-forward task. This means that a user
will have to systematically test any specific combination of modules before productively applying it.

The description of the modules in Chapter 4, and the following chapters, is based on the categorization
shown in Table 3.1.

Table 3.1: MATSim functionality overview.

Module Described in Comment

Global Modules and Global As-
pects

Section 4.3

Controler Section 4.3.1 core
Events Section 2.3.2 and 21.5 core
Parallel Computing Section 4.3.2 core
Global Section 4.3.3 core
MATSim Data Containers Section 4.2 and Chapter 10
Network Section 4.2.1 and 10.2 core
Population Section 4.2.2 and 10.3 core
Counts Section 10.4 core
Facilities Section 10.5 core
Households Section 10.6 core
Vehicles Section 10.7 core
Network Editors
MATSim JOSM Network Editor Chapter ?? rarely used?
Map-to-Map Matching Editors in
Singapore

Chapter ?? rarely used?

The “Network Editor” Contribu-
tion

Chapter ?? rarely used?

Observational Modules Section 4.7 core
Travel Time Calculator Section 4.7.1 core
Link Stats Section 4.7.2 core
Scoring Section 4.5 core
Basic Strategy Modules Section 4.6
Time Innovation Section 4.6.1.1 core
Route Innovation Section 4.6.1.2 core
Mode Innovation Section 4.6.1.3 core
Selectors Section 4.6.2 core

Continued on next page
4http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/
5PTV (2011)
6http://sumo.dlr.de/wiki/TraCI

April 25, 2024 29

http://matsim.org/extensions
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook/
http://sumo.dlr.de/wiki/TraCI

Chapter 3. Available Functionality and How to Use It 3.4. An Overview of Existing MATSim Functionality

Table 3.1 – Continued from previous page
Mobsims
QSim Section 4.4.1 and Chapter 11 core
JDEQSim Section 4.4.2 rarely used?
Hermes missing maintained by SBB
Individual Car Traffic
Signals and Lanes Chapter ?? contrib; maintained by VSP;

rarely used?
Parking Chapter ??
Electric Vehicles Chapter ??
Roadpricing Chapter ?? contrib; maintained by VSP
Other Modes Besides Individual
Car
Public Transport Chapter 12 core
The “Minibus” Contribution Chapter 19 contrib; maintained by VSP
Semi-Automatic Tool for Bus
Route Map Matching

Chapter ?? rarely used?

Events-Based Public Transport
Router

Chapter ?? rarely used? should be inte-
grated into core

Matrix-based pt router Chapter ?? rarely used?
Multi-Modal Contribution Chapter ?? functionality mostly integrated

into core
Car Sharing Chapter ?? contrib; maintained by M. Balac;

superceeded by newer package
by same author?

Dynamic Transport Systems Chapter 18 contrib; maintained by VSP
Commercial Traffic
Freight Traffic Chapter ?? contrib; maintained by VSP
Additional Choice Dimensions
Destination Innovation Chapter 20 contrib; the “frozen epsilons”

material is maintained by VSP
Joint Trips and Social Networks Chapter ??
Within-Day Replanning
Within-day Replanning Chapter ?? mostly integrated into core
Belief Desire Intention (BDI)
Framework

Chapter ?? maintained by RMIT

Automatic Calibration
Cadyts integration Chapter ?? contrib; maintained by VSP
Visualizers
Via Visualizer Chapter 5 commercial; maintained by

simunto
OTFVis Visualizer Chapter 7 contrib; maintained by VSP
Analysis contrib; material is not well or-

ganized
Accessibility Chapter ?? contrib; somewhat maintained

by VSP
Emissions Chapter 15 contrib; maintained by VSP
Interactive Analysis and Decision
Support

Chapter ?? rarely used?

The “analysis” contrib Chapter 14
Continued on next page

April 25, 2024 30

Chapter 3. Available Functionality and How to Use It 3.4. An Overview of Existing MATSim Functionality

Table 3.1 – Continued from previous page
Computational Performance Im-
provements
PSim Chapter ?? rarely used?

April 25, 2024 31

4
More About Configuring MATSim

Authors: Andreas Horni, Kai Nagel

<module name="global" >
<param name="numberOfThreads" value="2" />
...

</module >

4.1 General

This chapter describes configuration options that can be used together with the three basic elements:
config, population and network.

MATSim writes configuration files in several locations; for example, in the logfile, in the iteration output
directory, or with the CreateFullConfig functionality described in Section 2.1.3. As explained in Sec-
tion 2.4, these files come with comments explaining configuration options. This is often the best source
for configuration options.

The config can evidently be modified by modifying the config file. It can also be modified in code. The
basic syntax is given in Sec. 3.2.3. If you are planning to use MATSim through an IDE, then this is often
the better option. In the following, that syntax is not separately explained, but in many cases it should
be straighforward for figure it out from the XML syntax together with tab completion in the IDE.

4.2 MATSim Data Containers

4.2.1 Network

The config file section
<module name="network">

...
</module >

specifies which network file will be used in the simulation (Section 2.1.3 and 2.3.1.1). Further configu-
ration options, e.g., specification of time-variant networks, are presented in Section 10.2.

4.2.2 Population

The config file section

33

Chapter 4. More About Configuring MATSim 4.3. Global Modules and Global Aspects

<module name="plans">
...

</module >

specifies which population file with its day plans will be used (Section 2.1.3 and 2.3.1.2). Further
configuration options, e.g., specification of arbitrary agent attributes or subpopulations, are presented
in Section 10.3.

4.2.3 Further MATSim containers

Further MATSim containers are described in Chapter 10.

4.3 Global Modules and Global Aspects

4.3.1 controler config file section

The controler is an indispensable module for running MATSim; its parameters are set in the config file
section
<module name="controler" >

...
</module >

The MATSim run’s output directory, its number of iterations and the plans and events output interval
can be specified here. The expected mobsim can be defined (Section 4.4). The routing algorithm is
defined here by using

<param name="routingAlgorithmType" value="{Dijkstra | FastDijkstra |
AStarLandmarks | FastAStarLandmarks | SpeedyALT}" />

SpeedyALT is was added just before release 13.0 was finalized. In benchmarks it is about a factor of
4 faster FastAStarLandmarks, which was the fastest alternative up to then. It is recommended to use
SpeedyALT, but it is not yet the default.

4.3.2 Parallel Computing

MATSim uses multi-threading to accelerate computing speeds. Related configuration parameters can be
found in several config modules; they are combined into one section here.

Global Number of Threads The config file section global contains the setting
<module name="global" >

<param name="numberOfThreads" value="2" />
...

</module >

This number is used in several places; most importantly for innovative strategies, where multiple re-
quests are distributed to multiple threads. A good starting point is using the number of available
cores.

Parallel Event Handling The config file section
<module name="parallelEventHandling" >

...
</module >

is used to define the number of threads used for event handling. As described in Waraich et al. (2009),
the simulation can be substantially accelerated when using multiple threads for the events handling,
which can be a bottleneck in MATSim simulation runs.

April 25, 2024 34

Chapter 4. More About Configuring MATSim 4.4. Mobility Simulations

Parallel QSim The number of threads for the parallel QSim (cf. Dobler, 2013) can be configured by
<module name="qsim" >

<param name="numberOfThreads" value="10" />
...

</module >

General Recommendations Generally, computations using threads are not necessarily faster with more
threads, which is also true for MATSim. Some experimentation is necessary for each combination of
scenario and hardware. Here are some recommendations:

• For the “global” number of threads, a good starting point is the number of available cores.

• It is no longer possible to switch off parallel event handling completely; setting it to ‘0’ or ‘null’ or
‘1’ achieves the same result. Setting it to values larger than one sometimes leads to performance
gains, but they are rarely significant.

• The most sensitive parameter is that for the QSim. For somewhat newer hardware (e.g., Apple
Macbook Pro from 2014), using six of the available eight cores for the QSim can make the mobsim
more than a factor of two faster and the machine can still be used for office tasks. Experiences
with older servers show that one must carefully investigate the number of threads for the mobsim,
since using more threads often slows it down (Dobler, 2013).

• Sometimes, High-Performance Computing Clusters are available. Typically, one pays for compu-
tation time, either directly, or by a loss of priority, with an amount proportional to the reserved
resources, that is, the time the job took to finish, multiplied by the number of reserved cores. In
this kind of situation, the number of cores used throughout the whole process should be stable
to avoid paying for unused resources. A recommendation in this case is to set the number of
threads for the QSim to the best value (see above), say n, parallel events handling to 1, the
“global” number of threads to n + 1, and submit the job requesting n + 1 cores. Also note that
fewer threads are almost always better in terms of efficiency. In addition, for both calibration
and “what-if” scenario exploration, one typically needs to run a large number of simulations with
different parameters or input data. If total RAM memory is not an issue, then it is often more ef-
ficient to run a large number of simulations simultaneously with a low number of threads, rather
than a low number of simulations with lots of threads.

4.3.3 global config file section

In the config file section
<module name="global" >

...
</module >

the simulation’s random seed, the “global” number of Java threads (see Section 4.3.2) and the coordinate
system (cf. Section 2.3.4) can be defined. Note that no matter if you explicitly define the random seed or
not, MATSim always starts from a fixed random seed, which is either the one you define, or an internal
constant. That is, if you start the same version of MATSim twice from the same config, you will get the
same sequence of random numbers, and thus exactly the same simulation. If you want to change this
behavior, you need to change the random seed explicitly.

4.4 Mobility Simulations

An overview of MATSim mobility simulations is given by Dobler and Axhausen (2011). The queue model,
which is used both by the QSim and the JDEQSim, implements the following elements:

Storage constraint: vehicles can enter a link only when the link is not full.

April 25, 2024 35

Chapter 4. More About Configuring MATSim 4.4. Mobility Simulations

initial
demand analysesmobsim scoring

replanning

Figure 4.1: Mobsim within MATSim cycle.

Free speed constraint: vehicles can leave a link only after their free speed travel time has passed.

Outflow constraint: vehicles can leave a link only if the outflow capacity has not yet been consumed in
the current time step.

See Chapter Queueing Representation of Kinematic Waves for details.

4.4.1 QSim

The queue-based and time-step based QSim (Gawron, 1998; Simon et al., 1999; Cetin et al., 2003; Dobler
and Axhausen, 2011; Dobler, 2010) is MATSim’s default mobsim. Its parameters are set in the config file
section
<module name="qsim" >

...
</module >

Important parameters are:

• By specifying
<param name="numberOfThreads" value="..."/>

QSim can be run in parallel, see Section 4.3.2.

• The parameters
<param name="flowCapacityFactor" value="..." />
<param name="storageCapacityFactor" value="..." />

need to be set accordingly when running sample scenarios. For example, for a 10% sample, these
factors need to be 0.1.

• QSim currently supports the following types of traffic dynamics:

– queue: No vehicle can enter when the storage capacity of the link is exhausted.
– withHoles: When a vehicle leaves a link, a so-called hole is created, which travels upstream

with 15 km/h, which is a typical kinematic wave speed. A vehicle can enter the link only
when a hole is available at its upstream end. The link is initialized with as many holes at
its upstream end as it has storage. This models some aspects of kinematic waves.

– kinematicWaves: This goes beyond the withHoles setting by also restricting the inflow to a
link. The maximum inflow is computed as the maximum flow from a fundamental diagram
where both the free flow and the congested branch are assumed as linear.

Again, see Chapter Queueing Representation of Kinematic Waves for details. These settings become
increasingly more realistic but less well tested from top to bottom. They are configurable with
the parameter
<param name="trafficDynamics" value="..." />

• As shown in Section 11.3, QSim can handle multimodal scenarios.

April 25, 2024 36

Chapter 4. More About Configuring MATSim 4.5. Scoring

• The setting
<param name="stuckTime" value="..." />

determines after how many seconds of non-movement a vehicle is moved across an intersection
despite violating the storage constraint of the destination link. This parameter is introduced to
resolve grid-locks, i.e., geometrical arrangements where no vehicle can move any more. With
the QSim model, it is possible to add vehicles beyond the storage constraint to an overcrowded
link. This corresponds to maintaining a minimal flow even under very congested conditions. The
default value of this parameter is set to 10, i.e., non-moving vehicles are moved forward after
10 simulation time steps of non-movement. This may seem a rather short time, but system-
atic investigations (unfortunately never published) have shown that the simulations become, in
comparison to traffic counts data, less realistic when this parameter is increased.

4.4.2 JDEQSim

JDEQSim (Waraich et al., 2009) was used for project KTI Frequencies (Balmer et al., 2010). It is is a Java
reimplementation of DEQSim (Waraich et al., 2009; Charypar et al., 2007b, 2009) and provides parallel
event handling, but no parallel simulation (Balmer et al., 2010, p.11). Back-propagating gaps/holes (see
above) are supported, but traffic lights, public transport and within-day replanning are not.

To run JDEQSim, the parameter mobsim of controler config file section must be set to JDEQSim, and a
config file section
<module name="jdeqsim" >

...
</module >

must be provided.

4.4.3 Hermes

Hermes was commissioned by SBB (Swiss Federal Railways) and developed by ETH Zurich. Its purpose is
to concentrate on the most important 80% of the functionality, and provide a faster implementation for
that. It is maintained and used a lot by SBB. It is less appropriate for research, since it rarely contains
the newest features with respect to a certain problem.

4.5 Scoring

initial
demand analysesmobsim scoring

replanning

Figure 4.2: Score within MATSim cycle.

The config file section
<module name="planCalcScore" >

...
</module >

specifies the parameters used for scoring agents’ plans (Section 2.1.3); parameters are explained in
Chapter 10.

April 25, 2024 37

Chapter 4. More About Configuring MATSim 4.6. Replanning Strategies

4.6 Replanning Strategies

initial
demand analysesmobsim scoring

replanning

Figure 4.3: Replanning within MATSim cycle.

Replanning strategies are the basic innovation modules available in MATSim. One can differentiate
between modules that affect the set of plans that each agent holds (choice set generation), and others
that only select between these plans (choice). For a detailed discussion of MATSim in the context of
choice modeling, see Chapter Choice Models in MATSim.

As already shown in Section 2.2, replanning is defined as shown in the following example:
<module name="strategy" >

<parameterset type="strategysettings" >
<param name="strategyName" value="ReRoute" />
<param name="weight" value="0.2" />

</parameterset >
<parameterset type="strategysettings" >

<param name="strategyName" value="TimeAllocationMutator" />
<param name="weight" value="0.1" />

</parameterset >
<parameterset type="strategysettings" >

<param name="strategyName" value="ChangeSingleTripMode" />
<param name="weight" value="0.1" />

</parameterset >
<parameterset type="strategysettings" >

<param name="strategyName" value="ChangeExpBeta" />
<param name="weight" value="0.7" />

</parameterset >
</module >

Each module is given a weight, determining the probability by which the course of action represented
by the module is taken. The strategies’ weights are normalized in case they do not sum to one. In this
example, each agent changes her route with weight 0.2, plan timing with probability 0.1, and trip mode
also with probability 0.1. Otherwise, the agent chooses a plan from her set of plans according to a logit
model. Also see Fig. 4.4.

In older versions of the config file, you will find a deprecated configuration syntax using numbered
strategies.

Please note that combining strategies that are extensions (see Section 3.2), like destination innovation
together with public transport, may not always work as expected. Combine them with care, and contact
http://matsim.org/faq if you are unsure.

4.6.1 Plans Generation and Removal (Choice Set Generation)

This subsection describes config settings that modify the choice set.

4.6.1.1 Time Innovation

Time innovation is applied by adding
<param name="strategyName" value="TimeAllocationMutator" />

April 25, 2024 38

http://matsim.org/faq

Chapter 4. More About Configuring MATSim 4.6. Replanning Strategies

0.1 TimeAllocationMutator

0.1 ChangeSingleTripMode

0.7 ChangeExpBeta

0.2 ReRoute

plan

Selection

Innovation

Figure 4.4: Replanning according to the above XML-specification.

plus its weight as a strategy setting. It is configured by a section
<module name="TimeAllocationMutator" >

...
</module >

This strategy shifts activity end times randomly within a configurable range as described by Balmer
et al. (2005); Raney (2005).

4.6.1.2 Route Innovation

Route innovation is applied by adding
<param name="strategyName" value="ReRoute" />

plus its weight as a strategy setting, and by specifying the routing algorithm in the controler config
file section (Section 4.3.1). MATSim routing is described by Lefebvre and Balmer (2007).

4.6.1.3 Mode Innovation

Mode innovation is applied by adding
<param name="strategyName"

value="{ChangeTripMode | ChangeSingleTripMode | TripSubtourModeChoice}" />

plus its weight as a strategy setting. In the config file, an additional section needs to be added:
<module name="{changeMode | changeMode | subtourModeChoice}" >

<param name="modes" value="car ,pt" />
...

</module >

This would configure mode switches between car and public transit.1

ChangeTripMode randomly picks one of a person’s plans and changes the mode of transport. By default,
the supported modes are: driving a car and using public transport. Only one mode of transport per
plan is supported. When using different modes for sub-tours on a single day, the SubtourModeChoice

strategy is required. Optionally, car availability is respected. ChangeSingleTripMode randomly picks one
of a person’s plans and changes one single trip’s (picked randomly) mode of transport. In contrast to
ChangeTripMode, it allows for multiple modes in one plan. By default, supported modes are: driving a
car and using public transport. Also, this strategy can (optionally) respect car availability.

1The additional section was called changeLegMode in the past. There should be an error message if you use the wrong
name, but please be aware.

April 25, 2024 39

Chapter 4. More About Configuring MATSim 4.6. Replanning Strategies

Mode innovation is described by Rieser et al. (2009); Meister et al. (2010); Ciari et al. (2008, 2007).

4.6.1.4 Plans Removal

The maximum number of plans per agent is configured by the setting
<module name="strategy" >

<param name="maxAgentPlanMemorySize" value="5" />
...

</module >

If an agent ends up having more plans, MATSim will start removing plans, one by one, until the maximum
number of plans is reached. Plans to be removed are selected by the setting configured by
<module name="strategy" >

<param name="planSelectorForRemoval" value="..." />
...

</module >

Starting with release 0.8.x, the config file comments give possible options.

This option is not well investigated, cf. Section Choice Set Generation in Chapter Research Avenues. Per
default, the plan with the lowest score is removed if the agent’s memory is full.

4.6.2 Plan Selection (Choice)

Selectors and their weight are also added as strategies by
<param name="strategyName" value="KeepLastSelected | BestScore | SelectExpBeta

ChangeExpBeta | SelectRandom | SelectPathSizeLogit" />

Selectors work as follows:

• KeepLastSelected keeps the plan selected in the previous iteration.

• BestScore selects the plan with the currently highest score.

• SelectExpBeta performs Multinomial Logit Model (MNL) selection between plans. It can be con-
figured by the BrainExpBeta parameter from the scoring config group2 being the scale parameter
in discrete choice models, as shown in Equation ??. We recommend keeping this parameter at its
default value of 1.0.

• ChangeExpBeta changes to a different plan, with probability dependent on e∆score , where ∆score
is the score difference between the two plans. This will also sample from an MNL (see Section Se-
lection (Choice) in Chapter Agent-Based Traffic Assignment).

• SelectRandom performs random selection between the plans.

• SelectPathSizeLogit selects an existing plan according to the path size logit model described by
Frejinger and Bierlaire (2007). It can be configured by the PathSizeLogitBeta parameter from the
scoring config group.3 This selector has never been investigated systematically.

BestScore should be used with care; it tends to get stuck with sub-optimal plans: Plans badly scored
due to a random fluctuation in one single iteration, e.g., a rare traffic jam, will never be tested again.
Thus, we recommend using this only in conjunction with one of the selectors that include a random
element.

2This is in the scoring config group for historical reasons.
3Also in the scoring config group for historical reasons.

April 25, 2024 40

Chapter 4. More About Configuring MATSim 4.7. Observational Modules

4.6.3 Innovation Switch-Off

For theoretical (Section Innovation (Choice Set Generation) in Chapter Agent-Based Traffic Assignment)
reasons, it makes sense to eventually switch off the innovative strategies, thus keeping the set of plans
for each agent fixed from then on. This behavior can be configured by
<param name="fractionOfIterationsToDisableInnovation" value="..." />

It makes sense to use this together with Method of Successive Averages (MSA) averaging of the scores
(Section 10.3.3).

4.7 Observational Modules

4.7.1 Travel Time Calculator

The routing module, for example, needs travel time estimations for all network links. To keep com-
putational effort feasible, travel time estimations are aggregated into time bins. Parameters of this
aggregation, such as bin size, can be specified in the configuration file section travelTimeCalculator.

4.7.2 Link Stats

The linkStats config file section can specify the output interval of individual links’ simulation statistics.
It is configurable if the simulated volumes are written per iteration or averaged over multiple iterations.
As one of their many functions, link stats are used for comparison with count values, as introduced in
Section 10.4.

4.8 More Information

The simulation generates a file output_config.xml. This file contains all config settings as they were
used for the run under consideration, and adds a comment to most config switches. This should be the
primary source of information for the meaning of config switches. If some config switch is not explained
and you need its interpretation, please ask under https://matsim.org/faq and it will be tried to rectify
the situation as quickly as possible.

A complete config dump including all comments is also included in logfile.log. Alternatively, complete
config files with all switches set to their default values can be generated as explained in Section 2.1.3.

Recall that we explicitly recommend to not use complete config files; rather specify only those switches
that you wish to set away from their default settings. The reason is that we change defaults over time
to settings that we consider as state-of-the-art according to our research. If you do not allow for this
by explicitly setting all switches, then your simulation will over time move away from what we consider
the best configuration. Also, you will have compatibility problems with your config file, since we may
modify or remove switches over time. The automatically generated output_config_reduced.xml can be
used as a starting point for a short config file.4

4Some additional material from that file still has to be removed manually – we are not there yet in fully cleaning this up.

April 25, 2024 41

https://matsim.org/faq

Part II

Visualizers

5
Simunto Via

Author: Marcel Rieser

5.1 Basic Information

Entry point to documentation:
https://simunto.com/via

Invoking the module:
Standalone GUI, double-clickable jar file

Selected publications:
https://www.simunto.com/via → Download → manual

5.2 Introduction

Via is an application to visualize and analyze MATSim simulation results. Unlike MATSim, Via is not open
source; it is developed as a proprietary commercial software by Simunto GmbH, a company founded

44

https://simunto.com/via
https://www.simunto.com/via

Chapter 5. Simunto Via 5.3. Simple Usage

by a former PhD student involved in MATSim development. The development was originally started by
Senozon AG, an Eidgenössische Technische Hochschule (ETH) Spin-off company working with MATSim.
Shortly after Senozon AG was founded, first (potential) client presentations began; the lack of visual
material was an obvious handicap. Explaining to customers that all answers to their questions were
contained in a huge events file was not satisfactory; pictures or even animations made it much easier
for them to understand. Thus, work on a visualization tool started as soon as the company was set
up. Initially planed as a purely internal tool, it quickly became clear that a graphical visualization and
analysis tool would also benefit other users of MATSim. After a beta test phase with selected MATSim
users in Spring 2011, the first version of Via was released in July 2011. Since then, the list of features
provided by the application has grown continuously. In early 2018, ownership of Via was transferred to
Simunto GmbH which continues to enhance and support the application.

Via is written in Java and thus works on any platform able to run MATSim. For easier deployment, the
application comes as double-clickable, native executable on Windows and Mac OS X, partially hiding
its Java nature. A limited version is available for free and can be downloaded from the product web-
site (Simunto GmbH, 2018). Different licenses are available for commercial usage or for research or
educational purposes to serve different user group needs.

Via includes some general functionality that most people will use in the core application, like visualizing
networks, facilities, vehicles and activities. Optionally available plugins provide additional features
often relevant only to specialized user groups. This includes functionality related to public transport,
comparison with car counts, using web maps like Google Maps or OSM as background, aggregation
analyses, or movie recording.

Via allows customization of its window. The following descriptions refer to elements as they are placed
in the default layout. The default configuration can be re-created by choosing Reset Window State from
the Window menu in Via.

5.3 Simple Usage

Via differentiates between data sets, and how the data is visualized. It does so by managing data
sources (typically MATSim files like network.xml or events.xml), and layers (e.g., displaying the network,
vehicles, activity locations). A layer can use more than one data source for its visualization purposes
(e.g., a network and some data from the events), and a data source can be used by multiple layers
(e.g., events can be used by many different layers to visualize different things like vehicles, activities,
link volumes, etc).

By default, Via’s window looks similar to the one shown in Figure 5.1. To add a file as a data source,
the file can either be drag-and-dropped onto the layers list left of the black visualization area, or by
choosing Add Data... from the File menu. To add a layer, the little plus icon in the lower left of the
window can be pressed, or by choosing Add Layer... from the File menu. To get started, it’s usually
best to add a network and (small) events file from MATSim to Via, and create a Network layer and a
Vehicles layer.

Elements shown in the visualization area like the network or vehicles can be queried. Queries are
usually provided by layers, made available with buttons with question-mark icons. Clicking such an
icon activates the corresponding query mode, and any subsequent click on the visualization area will
run the query. Query results are shown on the right side of the visualization area. Figure 5.1 shows a
network query for links. One query is special, globally available, and not linked to a layer: querying
an agent plan. This query is available from the toolbar, next to the icon, to shift the visualization view
around.

Once a query has been made, Via often allows another query based on the current query re-
sults. By right-clicking in the visualization area, a pop up menu appears with more options re-
garding the last query, as well as additional possible queries. Examples are: Select Link Analysis

April 25, 2024 45

Chapter 5. Simunto Via 5.3. Simple Usage

Figure 5.1: Via’s window with default layout and a network query being shown.

given a link, Select Facility Analysis given a facility, List Transit Lines that use a given link, or
List Passengers if a transit vehicles was queried in the first place.

April 25, 2024 46

Chapter 5. Simunto Via 5.4. Use Cases and Examples

5.4 Use Cases and Examples

5.4.1 Agent Visualization

The animated visualization of agents moving around in the modeled area was one of the main features
in Via’s original development. To do this, Via needs only the network.xml and events.xml files from a
MATSim run as data sources. For the visualization, a Network layer, Vehicles layer and activities layer
must be created. With this setup, vehicles will move around in the visualization area as time progresses,
and agents performing activities will be represented as colored dots.

The visualization can be further customized; with the addition of a population.xml file, more detailed
activity coordinates can be loaded to obtain a better distribution of activity locations (MATSim’s events
file does not contain coordinates for activities, only the assigned link ID. So by default, all activities taking
place on a link are first shown at the location of the link’s to-node). Vehicles and groups of vehicles
can also be styled differently; it is possible to visualize transit vehicles with a square shape with colors
representing the occupancy of the vehicles, pedestrians or cyclists in a multi-modal simulation can be
shown as circles and private cars can be displayed with a triangular shape with colors representing
their absolute speed or their speed relative to the allowed maximum speed on their current link (see
Figure 5.2). As mentioned above, arbitrary groups of vehicles can be styled differently, which is useful to
highlight special agents, e.g., when simulating a fleet of electric vehicles, a car sharing fleet, or agents
simulated with special routing guidance.

It is also possible to load arbitrary attributes for agents and then use those attributes for visualization
purposes, e.g., having different colors for vehicles driven by agents who are employees, have a high
income or are within a certain age range.

Figure 5.2: Vehicles in Via: Green triangular symbols represent private cars, pink rectangular symbols
public transport vehicles.

5.4.2 Facility Analysis

Activity facilities allow for very detailed modeling in MATSim, especially considering the functionality
provided by the destination innovation module (Chapter 20). Via provides several unique ways to
analyze the mobility effects to and from facilities.

April 25, 2024 47

Chapter 5. Simunto Via 5.4. Use Cases and Examples

For each facility, a detailed analysis can be performed showing the number of agents arriving at, de-
parting from, or staying at a facility over the simulated time. The numbers can be differentiated by the
type of activity the agents perform at the facility, by the transport mode they arrive or depart with, or
by other arbitrary agent attributes loaded by users.

An alternative analysis is similar to the – for transport planners – well known Select Link Analysis,
but designed for facilities: the Select Facility Analysis. This analysis shows the combined link loads
produced by agents arriving or departing at a facility, showing the starting location for agents visiting a
specific facility and what routes they use.

5.4.3 Public Transport Analysis

The public transport plugin provides many different functions for analyzing public transport simulations.
It starts with providing the specified vehicle types as agent attributes, so the vehicles can be differently
visualized, based on the vehicle type they represent. Also, the absolute or relative occupancy of a
transit vehicle is provided as attribute, allowing transit vehicles to be visualized accordingly. For stop
locations, the number of passengers waiting for a bus or train can be plotted over the time of day, and
the occupancy along a bus or train route can be visualized.

A special, but very useful visualization is the Route Flow analysis. This shows, in a visually appealing
way, the number of passengers traveling between two stops along a route—for all possible stop combi-
nations. Figure 5.3 shows an example of such a route flow with the route of the transit line shown in
the background. It is clear that the demand on the bus route is more or less split in two; a first travel
demand up to about the first third of the route, and then it again collects passengers all wishing to go
to one of the last stops along the route. This could indicate that it might make sense to split the line
in two.

Figure 5.3: Passenger flows on a transit line.

April 25, 2024 48

Chapter 5. Simunto Via 5.4. Use Cases and Examples

5.4.4 Scenario Comparisons

A typical use of MATSim is simulating a base case and then one or more case studies. Comparing
scenarios then becomes an important step in the analysis of the different case studies. Via allows
comparison of the link volumes of two scenarios visually by coloring the network with the absolute or
relative difference of the link volumes between two models. In the future, other differences like average
speeds will supported too. The differences are time-dependent, aggregated over time intervals as small
as 15minutes.

5.4.5 Aggregating Data

While MATSim requires and produces a lot of disaggregated data, it is still often necessary to aggregate
data to make statements or predictions about a simulated scenario. Via provides a powerful mechanism
to easily build arbitrary aggregations of available data. Such data can be either point data (like activity
locations, trip start locations, GPS points or any other spatial point data) or origin-destination data (like
trips with a start and end location, or the relation of an activity location to the home location of the agent
performing the activity). While Via provides: activity locations, trip start and trip end locations, facility
locations (automatically) as point data sources for aggregation, and the trips performed by agents as
Origin-Destination (O-D) data sources, any tabular custom data with coordinate attributes can also be
used for this.

Data can be aggregated into a rectangular or hexagonal grid, where the cell-size can be specified by
the user, or into arbitrary zones provided as Environmental Systems Research Institute (ESRI) shape file
by the user. The data points can be filtered by any of the available attributes, and the aggregation can
either just count the data points in each region, or build the sum, the minimum or maximum or average
of a data points attribute.

With the activity locations provided by an Activities Layer, the following (and more) aggregations are
possible:

• show number of performed activities per region,

• show number of performed work activities per region,

• show number of work activities starting after 10 am per region, and

• show average duration of work activities starting after 10 am per region.

Similarly, with trip data provided by a Vehicles layer, the following exemplary aggregations are possible:

• show number of trip starts per region,

• show number of trip starts with mode “car” per region,

• show percentage share of trips starting with mode “car” in a region, compared to all trips starting
in that region, and

• show average duration of trips starting with mode “pt” in a region after 11 am.

By using custom data tables, e.g., containing more information about trips, i.e., the ’from and to’
activity types they connect, the number of line switches if it is a public transport trip (this requires the
aggregation of MATSim’s legs to trips for analysis purposes), many more complex analyses are just a
few clicks away in Via, like showing the average duration of car-trips starting between 6 am and 8 am,
going from “home” to “work”.

April 25, 2024 49

Chapter 5. Simunto Via 5.4. Use Cases and Examples

Figure 5.4: Aggregation analysis: Number of performed activities during the whole day.

April 25, 2024 50

6
SimWrapper

Author: Billy Charlton

6.1 Basic Information

Entry point to documentation:
Documentation website: https://simwrapper.github.io/docs/intro

Invoking the module:
SimWrapper application available at https://vsp.berlin/simwrapper

Selected publications:
Charlton and Sana (2022)

51

https://simwrapper.github.io/docs/intro
https://vsp.berlin/simwrapper

Chapter 6. SimWrapper 6.2. Introduction

6.2 Introduction

This chapter describes SimWrapper, an open-source web-based data visualization platform which can
produce many different types of data visualizations based on MATSim outputs. These visualizations
include roadway network volume plots, transit network summaries, and aggregated views of origin/des-
tination patterns, and many others. The various types of visualizations can also be combined into pages
known as dashboards, for interactive exploration.

SimWrapper, in a nutshell:

• is a website that runs client-side javascript in the form of a “single page application”, a common
approach in current web development that is compatible with all modern web browsers;

• allows the user to navigate through their local filesystem or shared network storage of model
runs to view results that are saved in a specific folder, rather than a database-centric approach.
This matches the design of MATSim and other simulation models which produce collections of
output files by default;

• provides a collection of data visualization archetypes that are each appropriate for displaying a
certain type of data, for example various statistical chart types (bars, lines, area, pie), geographic
data viewers supporting road and transit network link data, area aggregation (“choropleth” and
“spider”) maps, XY coordinate plots, and many more;

• supports network-based file storage for public- and/or group-accessible shared data files (model
runs), but has no other back-end server requirements and can run completely locally if no network
file storage is available or needed;

• can combine all of these disparate components into cohesive dashboards that the user can lay
out in a flexible manner, using small declarative configuration files. These configurations can be
applied across multiple projects or simulation runs;

SimWrapper is evolving rapidly, and this book cannot keep up with the latest features in perpetuity.
Users interested in using SimWrapper for MATSim analysis tasks are directed to the main SimWrapper
documentation website at simwrapper.github.io. The main website includes the latest guides for getting
started with the tool, as well as detailed reference details for the many visualization types available in
the tool.

6.3 Starting SimWrapper

Browse to https://vsp.berlin/simwrapper to access the VSP instance of the SimWrapper website.

If your simulation results are on your local machine, you can immediately access the files via Google
Chrome and Microsoft Edge by selecting ”Add local folder” from the main SimWrapper homepage and
authorizing access to a local folder.

Not using Chrome? If you are not using Chrome or Edge browsers, you can still access local folders by
running the small helper Python script available at https://pypi.org/project/simwrapper/ which runs
a private local webserver on your machine. To avoid this complication, we recommend using Google
Chrome.

If your simulation results are on network file storage, work with your network administrator to provide
HTTP access to the files. This is explained on the SimWrapper website at https://simwrapper.github.
io/docs/file-management.

To work with files on SSH-accessible computing machines including the TU Math Cluster, you must install
SSHFS for your operating system and mount the cluster machine files to a local folder. Then proceed as
above.

April 25, 2024 52

https://simwrapper.github.io
https://vsp.berlin/simwrapper
https://pypi.org/project/simwrapper/
https://simwrapper.github.io/docs/file-management
https://simwrapper.github.io/docs/file-management

Chapter 6. SimWrapper 6.4. Using SimWrapper to view MATSim results

6.4 Using SimWrapper to view MATSim results

The high-level workflow is as follows: after running a simulation, some outputs such as MATSim trips,
networks, and events can be directly viewed in SimWrapper, while other outputs require some post-
processing to produce summary datasets in Comma-Separated Values (CSV) comma-separated value
format.

Users are not expected to know or use JavaScript, Python or any other notebook programming language;
SimWrapper is essentially just a website like any other. It reads the users files directly and builds
visualizations according to the available files and configuration in the model output folders.

6.4.1 SimWrapper views based on regular MATSim output

The following outputs are viewable in SimWrapper without any post-processing or additional effort,
simply select the output file to open it in an interactive viewer:

• Network - The MATSim output network can be loaded, and then datasets can be ”joined” by link
IDs to produce useful visualizations

• Transit - Transit output networks can be viewed and various routes explored interactively. If there
is passenger ridership information embedded in the file it can also be viewed.

• Output Trips - The standard output_trips trip origin/destination file can be viewed as origins and
destinations aggregated to various sizes.

• Carriers - Freight and other carrier outputs including views of shipments, routes, and depots are
visualized

• Events - Vehicles on links can be visualized across time of day using the event viewer. Note that
web browsers have fundamental data size and memory constraints, more so than other desktop
software, thus some event files may be too large for your browser to ingest.

6.4.2 SimWrapper dashboard generated by the SimWrapper contrib

An easy way to generate a SimWrapper dashboard is to add
controler.addOverridingModule(new SimWrapperModule ());

into Controler as shown in Section 3.2.4. This will prepare the output directory (as defined in the config)
so that opening the directory in SimWrapper (as described in Section 6.3) will bring up a meaningful
SimWrapper dashboard.

6.4.3 Self-configured SimWrapper dashboards

Beyond these views that are present ”out of the box,” SimWrapper can also be configured to display
many different types of data:

• Area maps - Data that is aggregated into districts, zones, etc, can be viewed in area maps, with
extensive symbology support

• XY/Time plots - Any tabular data that has a coordinate and a time point for each row can be
explored by time of day. This is useful for point-based emission and noise data, for example

• Statistical charts - A large number of charts and plots such as area, bar, scatterplot, pie, and more
are all available through integration with well-known Plotly and Vega-Lite charting tools.

April 25, 2024 53

Chapter 6. SimWrapper 6.5. Building interactive dashboards with SimWrapper

• Summary tables - A data summarization engine is embedded in SimWrapper that allows you to
produce top-level summary statistics from data tables and format them in an output panel.

For this second set of visualizations, some work is required by the user: regular MATSim outputs need
to be post-processed to produce tabular data that the user wishes to view. This is beyond the scope
of this chapter; often, the Java code for running the simulation can produce these outputs directly, and
if not then Python or R scripts could be written to do the necessary processing. The scripts depend
heavily on what you wish to view. Refer to chapter V for an introduction to these tools.

6.5 Building interactive dashboards with SimWrapper

One of the key features of SimWrapper is its ability to lay out multiple visualization panels in a single
cohesive page, known as a dashboard. All of the visualization types described above can be laid out as
panels in a SimWrapper dashboard.

Figure 6.1: Example SimWrapper dashboard.

A dashboard is defined using a Yet Another Markup Language (YAML)-formatted configuration file, which
describes the layout and content of the dashboard and its constituent panels. Along with the input data,
the user provides configuration details for each dashboard which define the layout and any additional
parameters. Typical configuration details are the names and locations of input files, color and width
symbology specifications, and so on. These parameters can be set on a project level or for individual
runs, and are stored as specially-formatted text files using the common ”YAML” text markup format.
The website reads these files and generates the dashboards. Dashboards can be organized as separate
pages, be full-screen, or use a special side-by-side mode for comparison tasks.

April 25, 2024 54

Chapter 6. SimWrapper 6.6. To learn more

6.6 To learn more

SimWrapper is evolving rapidly, and this book cannot keep up with the latest features in perpetuity.
Users interested in using SimWrapper for MATSim analysis tasks are directed to the main SimWrapper
documentation website at simwrapper.github.io.

The website includes the latest guides for getting started with the tool, as well as detailed reference
details for the many visualization types available in the tool.

April 25, 2024 55

https://simwrapper.github.io

7
OTFVis

Author: David Strippgen

7.1 Basic Information

Entry point to documentation:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → otfvis

Invoking the module:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → otfvis → OTFVis class,
RunOTFVis class

Selected publications:
Strippgen (2009)

7.2 Introduction

For most MATSim users, Via’s (Chapter 5) free branch will be a good solution for their visualization
needs. However, if project demands reach beyond the given (extensive but fixed) abilities of the Via
free version, there is another—though not as stylish—option for MATSim output visualization, called
OTFVis.

OTFVis is short for “On the Fly Visualizer”, and was designed to support visualization of live simulation
runs with MATSim. Therefore, one purpose of the OTFVis is the debugging of MATSim (input) data.
Nonetheless, playing prerecorded OTFVis Movie File, not to be confused with the “Musical Video In-
teractive” file usually abbreviated mvi (MVI) files created from MATSim events is another way to use

57

https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-libs/tree/master/contribs

Chapter 7. OTFVis 7.3. Quickstart

OTFVis. Generally speaking, OTFVis serves as an open-source counterpart to the possibilities Via gives
the MATSim community. OTFVis is written in Java and available as source code to extend for differ-
ent MATSim projects’ special needs. Hence, it is possible and desirable to actually extend the OTFVis
functionality, incorporating the user’s own data sets and visualizations.

7.3 Quickstart

The easiest way to use OTFVis is as follows:
... main(...) {

Config config = ConfigUtils.xxx (...) ;

Scenario scenario = ScenarioUtils.loadScenario(config) ;

Controler controler = new Controler(scenario) ;

controler.addOverridingModule(new OTFVisLiveModule ()) ;

// ^^

controler.run() ;

}

Config options for OTFVis are available via the syntax
... main(...) {

Config config = ConfigUtils.xxx (...) ;

OTFVisConfigGroup otfConfig = ConfigUtils.addOrGetModule(

config , OTFVisConfigGroup.class);

otfConfig.setXxx (...);

...

}

These options overlap with what can be set inside the OTFVis GUI, but it is often more convenient to set
them once in Java instead of having to set them every time in the GUI.

The following text describes additional aspects of OTFVis. Please recognize, however, that these features
are no longer supported by the core team.

7.4 More Ways of Using OTFVis

In this chapter, we show how to achieve simple things, like creating MVI-files from MATSim run events,
how to play these MVI-files and how to use a MATSim config file to view/play an actual simulation with
all data (e.g., agents’ plans) attached. With the latter, it is also possible to examine the data “on the
fly” by sending queries into the mobsim and visualizing the results.

7.4.1 MVI Files (unmaintained)

MVI files can be generated through OTFVis. Under the hood, these files consist of a few binary dumps
of OTFVis data packed into a zip-file. This binary data is created by Java’s own serialization capabilities.
Unfortunately, this setup is not very change-resistant, making it advisable to regard MVI files as tempo-
rary cached versions of your event files. These MVI files can be re-created at any time from the event
files. Still, as converting one into the other is a time-prone process, the MVI files are a handy tool for
temporary storage and fast loading of your visualizations.

7.4.2 Starting OTFVis from the commandline (unmaintained)

OTFVis is a MATSim contribution. There is no actual stable release of the OTFVis package; so, to acquire a
working version, a “nightly build” needs to be downloaded as shown in Section 22.3.6. There, one finds
the latest otfvis-version-SNAPSHOT-build.zip file available for download. Unzip it to the place where

April 25, 2024 58

Chapter 7. OTFVis 7.4. More Ways of Using OTFVis

the matsim.jar already resides; do not forget to extract the libs-directories found in the respective zip
files.

OTFVis demands substantial Random Access Memory (RAM) (depending on your simulation size/MVI
file); to successfully launch the visualizer, a command line like
java -Xmx500m -cp matsim -XXX.jar:otfvis/otfvis -XXX.jar org.matsim.contrib.otfvis.OTFVis

(exchange “;” with “:” depending on the used Operating System (OS)) is a good starting point. This will
open the dialog window shown in Figure 7.1, asking for one choice from four possible usages of OTFVis;
these will be explained in the next section.

Figure 7.1: OTFVis Start Dialog.

7.4.3 Use Cases of OTFVis (unmaintained)

With the open dialog appearing after starting the vanilla OTVFis class, the following options appear, as
shown in Figure 7.1:

1. opening a prerecorded MVI file,

2. opening a network file (for inspection),

3. opening a live run of a MATSim config file (rather memory intensive) or

4. converting an event file (plus a given network file) to a movie (MVI) file.

Each tab stands for an individual usage. To start a visualization, one chooses the appropriate tab, fills
in the necessary data and finally proceeds by pressing the Load... button located in the bottom left
corner of the window.

The next sections provide an overview of different ways to use OTFVis.

Converting Event Files Though the first option tab is the most used choice for OTFVis, the fourth, and
last, option tab is a good starting point for exploring the visualizer; after having successfully run a
MATSim simulation, there will typically be some event files at one’s disposal. With any of these event
files and a given (matching) network file, a MVI file can be created. Four items: event, network and
movie file names, as well as a time period, must be specified for this tab to execute. The last parameter
is a time period, after which a new sample of the mobsim’s state is taken. This MVI-generation process
might be time consuming. For smaller projects, it might be an option to display the outcome in the
visualizer right away (by checking the box Open mvi afterwards). If the choice is to just convert the
events to a MVI file, this can be opened with the first option tab of the visualizer’s start dialog at any
time.

April 25, 2024 59

Chapter 7. OTFVis 7.4. More Ways of Using OTFVis

From the shell, this process can be started by giving the event file, network file and, optionally, the
conversion period as input parameters.

Network File Loading The second option tab offers the opportunity to examine a network file (e.g., for
errors). It will show a rendering of the given network and also, if so chosen in the preferences, the
associated network link IDs for each link. This option might be helpful for debugging a freshly converted
network, or inspecting specific regions and connections. Loading and interacting with a network file
should be very fast.

The network file can also be given as the sole parameter to OTFVis with the shell command.

Running a MATSim Configuration The third, and most advanced, option for running OTFVis is an actual,
live running mobsim, visualized in real time (actually much faster than real time; who has all day to
watch tiny cars drive around?). This option includes the possibility of exploring the data set and issuing
queries into the executing mobsim. These queries can display an agent’s day plan, show all links driven
by agent’s crossing a particular link of interest, search for a particular link or node by ID, or answer any
user-defined queries. We will see later in this chapter how to program a user’s own queries, but for the
rest of this section we will detail OTFVis “offline” behavior.

It is also feasible to input the config file as a single parameter to OTFVis by starting it from the shell.
OTFVis will make an educated guess whether the input is a config or a network file.

Loading & Displaying an MVI File If the first and default option tab is chosen, a MVI file is selected
and shown as detailed in next section 7.4.4. This is the most common use case for OTFVis; the same
results can be achieved by starting OTFVis from the shell with an MVI file as an argument.

7.4.4 Viewing an MVI File (unmaintained)

An example is illustrated in Figure 7.2. On the top left of the application, one finds buttons for controlling
the file playback. A short summary of the functionality is given in Table 7.1.

This buttonbar is followed by a text field where the desired time can be written for an instant jump.
In an MVI file, one can jump forward and backward in time, whereas in the live simulation case, going
back in time is omitted.

Another way of iterating through the animation is to grab the time slider at the bottom of the application
and drag it. Opening and closing bracket symbols are located on the left side of the slider; by clicking
them, one can set the start, or end, time of a time loop to the actual time step given, making it possible
to restrict playback to a certain space of time.

Table 7.1: OTFVis Buttonbar.

Icon Function
Reset - set time to the start time
Large step back
Small step back
Play
Pause
Small step forward
Large step forward

April 25, 2024 60

Chapter 7. OTFVis 7.4. More Ways of Using OTFVis

Figure 7.2: Displaying an MVI file.

7.4.5 General Interaction with the Main Screen

Regardless which option for loading data was chosen, interaction with the main display area is the
same.

Right button drag: Extend a rectangle for zooming into the view. Releasing the button will execute a
zoom, so the chosen rectangle will best fit the screen.

Middle-Mouse-drag: Pan (translate) the screen.

Right-Mouse-Click: Show a context menu (for now only with the option to save the view settings).

7.4.6 User Interaction in the Live Mobsim

When started as a live simulation, OTFVis will look different than Figure 7.3. First, the controls of the
simulation’s view flow are a restricted subset of those used in MVI playback. There is no way to reset
or rewind the simulation. One can still take small or large steps forward. A new option is given by the
synch checkbox, which determines whether the mobsim will stop for each frame the OTFVis renders, or
run independently. Usually the un-synched version will proceed faster, as the OTFVis output is restricted
to a default of about 30 frames/updates per second and a small mobsim’s simulation speed will be a
magnitude higher. The time-consuming generation of visualization data will also only be necessary for
a small fraction of the simulation. Length of OTFVis pauses between frames can be configured in the
preferences dialog.

April 25, 2024 61

Chapter 7. OTFVis 7.4. More Ways of Using OTFVis

Apart from the reduced control set, there is another UI element new to this OTFVis option. At the
bottom of the screen, the scrubbar/time line element is replaced by a “query” bar. It is possible
to code “queries” into the mobsim, answering questions about its inner state. As the simulation is
actually happening, all information necessary to run it is available for output. This is a clear superset
of information available in the event files and in the MVI files. This rich information infrastructure can
be queried and visualized in many ways. In the next session, a query example is given.

Figure 7.3: Live mode.

7.4.7 Running a Query in OTFVis Real Time Data

From the dropdown box, one can choose the different query types. Often, additional input is necessary,
either in the text field next to it or, more often, by clicking into the network. To give an example with
agent query selected, a click onto any agent’s symbol will give a visualization of this particular agent’s
day plan. This is shown in Figure 7.4. There are other pre-defined queries. These queries are rather
project-oriented, so defining own queries will probably be necessary to make best use of this option.
In the second part of this chapter, we will look into defining own queries.

April 25, 2024 62

Chapter 7. OTFVis 7.5. Extending OTFVis

Figure 7.4: Queries.

7.5 Extending OTFVis

Because it is open source, the OTFVis is a good starting point for customizing mobsim run visualizations.
OTFVis has been written in Java, but depends heavily on the Java OpenGL (JOGL) Java library.JOGL is a very
thin layer within the OS hardware driver, meaning it will have OS-specific, native dependencies. These
should be attended to by the maven-dependency management, but should still be kept in mind when
developing for OTFVis. The displaying parts of OTFVis are based on Open Graphics Library (OpenGL).
Therefore, it will be necessary to understand OpenGL to create new ways of displaying data. In the
following sections, we examine how data is computed inside the OTFVis and how this can be extended.

7.5.1 Design Principles of OTFVis

The overall goal of OTFVis design was to have an easy-to-extend, fast visualizer capable of handling
huge amounts of data. The specific design goals for the visualizer were:

• abstract data source (data collection) from data display (visualization),

• easy extension with own data types,

• capability for local simulation run on desktop computer,

• reduction of sent data to a minimum,

• visualization that connects to running simulation (on-the-fly),

• minimally-invasive format for existing MATSim code,

• enough speed for large scenarios,

• visualization that reads from post-mortem dump (MVI file), and

• use of hardware support for drawing.

MATSim runs can easily engage millions of agents traveling a network. To make a visualization of these
large data sets feasible, two measures have been taken. A quad tree structure was implemented to
ensure that only the smallest set of data necessary to display the visible sector of the network is
transferred. The quad tree is a simple data structure to aggregate spatial data and retrieve parts of
it efficiently for real time visualization. Apart from data structures, hardware is also used to speed
up displaying the simulation. OpenGL is a platform-independent API for interfacing graphics hardware,

April 25, 2024 63

Chapter 7. OTFVis 7.5. Extending OTFVis

specifically the 3D acceleration chips implemented in every contemporary computer. With the aid of
3D graphics hardware, millions of agents can be displayed in real time. Other measures were taken
to segregate data extraction from data visualization, like the reader/writer pairs presented in the next
section.

7.5.2 Readers and Writers

OTFVis was designed to be minimally dependent on the mobsim used. Data formats applied within the
mobsim should be abstracted from data used in OTFVis, meaning that any data passed to the visualizer
will have to run through some stages of abstraction.

The first stage is a writer-reader pair, responsible for transferring a certain set of data to the OTFVis.
The writer will understand the data format of the hosting mobsim and convert it to simple data types,
like float or string values. A set of these writers, all using a joint byte buffer to aggregate the data, will
be called after each mobsim step to accumulate data. This array of bytes is then sent to the visualizer,
which, in the original design, could be run anywhere in your network.

For each writer, there has to be a sibling-reader class, responsible for reading back extracted data from
the byte buffer. It is crucial to ensure that these pairs work synchronously. Most Writer/Reader-pairs
are implemented in the same class, since having the source-code at the same place reduces errors in
the synchronization.

Apparently, it can be necessary, or at least useful, to have different ways of visualizing data on the
OTFVis front-end. Thus, actual readers are not responsible for the drawing of a certain data set. A third
kind of class is responsible for that, the drawer classes.

7.5.3 Visualization of the Data

The reader objects in the quad tree will generate separate drawer objects for displaying “their” infor-
mation and add these to another data structure, called SceneGraph, which is responsible for the actual
drawing onto an OpenGL canvas. Displaying data in an interactive application will make re-draws of
the display necessary for a variety of reasons: displaying menus, animations, zooming, panning and
other user interactions. Not all of these changes introduce new data from the mobsim. Zooming into
the network will not imply reading data from the mobsim; panning the view most certainly will. When
no new data is needed, the scene graph is capable to handle all operations, no reader/writer class
will be accessed and displaying is solely done with existing drawers. On the other hand, if new data
is demanded, the scene graph will be “invalidated” (a term lent from the OpenGL community); thus,
the graph will be dismissed and all relevant readers will be asked for new drawer objects representing
the actual view. The scene graph is mainly a list of drawer objects; as an extra structuring unit, these
drawers can be sent into different layers, to render them more effective.

7.5.4 Layers

To make sure that only data actually necessary for drawing the particular area visible in the viewport
is sent, writers should minimize the data packets, so the quad tree can make a spatial data reduction.
This seems somewhat in opposition to OpenGL or any graphics API). The API wants maximal data to
be accumulated, to optimize output through the underlying hardware graphics pipeline. Think of an
assembly line vs. a handcrafted item; whenever the flow of data is interrupted, the assembly line stalls
and graphics performance derogates. To ease this issue, “layers” have been introduced to OTFVis. Any
drawer (responsible for a bit of information) can be assigned to a layer and these layers will ultimately
be summoned to draw the screen’s content. It is up to the layer to optimize the execution of the
drawers when necessary. For example, a network layer might store all network info from the drawer
in one array, or display a list to optimize drawing of the network; (often in OpenGL, it is advisable to

April 25, 2024 64

Chapter 7. OTFVis 7.5. Extending OTFVis

rather let the hardware decide what to draw. It might be faster to have all complete data residing in
graphics hardware memory, rather than to transfer the reduced information set every frame). There are
three layers predefined in OTFVis. The networkLayer contains the static street net, the agentLayer the
actual dynamic agents and a third layer, the miscellaneousLayer, contains additional data.

7.5.5 Patching the Connections

In total, there are four basic elements involved in the visualization: writers, readers, drawers and layers.
An additional class configures how the first two work together: OTFConnectionManager.

This class maps several routes for the information coming from the mobsim, building a chain of re-
sponsibility. Each data item starts at a link in our network. An OTFDataWriter object is responsible
for extracting the desired data from the link and writing it into a ByteBuffer. Complementing this, an
associated OTFDataReader is needed to retrieve data from the buffer. This item will also be responsible
for adding a drawable item derived from the class OTFGLAbstractDrawable to the scene graph repre-
senting the actual screen content. The connection between these items is made by adding entries into
the OTFConnectionManager, with calls to OTFConnectionManager.connectLinkToWriter(OTFDataWriter)

and OTFConnectionManager.connectLinkToWriter(OTFDataWriter, OTFDataReader), respectively.

Example (from the OTFClientLive.java):

conMan.connectLinkToWriter(OTFLinkAgentsHandler.Writer.class);

conMan.connectWriterToReader(OTFLinkAgentsHandler.Writer.class, OTFLinkAgentsHandler.class);

7.5.6 Sending the Data

The class OTFLinkAgentsHandler should give a good example of extracting, sending, receiving and dis-
playing data in the OTFVis context. The method invalidate is called whenever the actual scene graph
has been dismissed and needs to be rebuilt. In this case, a valid representation of the object’s state
should be added to the new scene graph. This also means that for drawing the actual scene, no
additional reading will take place, unless there is a change in the visible data: then, this update is
triggered.

7.5.7 Performance Considerations

When implementing new ways to visualize data, the following guidelines should be kept in mind.

If the data is spatially distributed over the whole network and is updated frequently, an
OTFDataWriter/Reader pair should be considered. It will reduce data updating to times when the data is
actually visible, not creating, transporting or drawing the data otherwise. If a fraction of the data needs
to be transferred only once—because it is static over the time of the simulation—it can be sent with the
writeConstData() method; otherwise using writeDynData() is advised. If the data is sparse and little
information is transmitted or it has no discernible spatial cohesion, it might be simpler to just add it to
the server quad tree as additional data with a call to OTFServerQuadTree.addAdditionalElement().

7.5.8 Sending Live Data

Flow of data within OTFVis is almost always a one way affair, except for one important issue: send-
ing queries into the simulation. In case of a live simulation run, visualized with help from the
OTFVisLiveClient class, queries can be sent into the simulation. Again, the methods involved in
this process are threefold; queries will be realized through an object derived from the abstract class
AbstractQuery. Such an object initiates several methods that will be used as callback over the lifetime
of the query.

April 25, 2024 65

Chapter 7. OTFVis 7.5. Extending OTFVis

First, a new query is sent to the server and the method installQuery() is called. In this method,
all relevant parts (network, population, events) of the simulation run can be accessed and data can
be collected. The visualizer framework will later repeatedly call the result() method, to retrieve an
OTFQueryResult object. This has to implement a draw() method, to visualize the results in the given
screen context. If the result indicates isAlive(), the query() method of the AbstractQuery-derived
object will be called with each frame; otherwise, only once.

April 25, 2024 66

Part III

Generation of MATSim

input

8
Generation of the Initial MATSim Input

Authors: Kai Nagel, Marcel Rieser, Andreas Horni

As explained in Section 2.3, the minimal MATSim input, besides the configuration, consists of the network
and population with initial plans. For illustrative scenarios, all three can be generated with a text editor.
For more complicated and/or realistic scenarios, they need to be generated by other methods. People
with knowledge in a scripting language may use that scripting language to generate the necessary XML
files, possibly honoring the MATSim Document Type Descriptions (DTDs). We ourselves use Java as
our scripting language for these purposes. Java is not necessarily the best choice here; this may be
discussed elsewhere. We do use it, for the following reasons:

• Most of us also program MATSim extensions and these currently have to be in Java. Thus, using
Java as a scripting language for initial input generation saves us the effort of becoming proficient
in another programming language.

• The MATSim software, by necessity, already contains all file readers and writers for MATSim input,
saving the effort of re-implementing them and one automatically moves forward with file version
updates. Additionally, one can directly use the MATSim data containers.

• Once one starts writing MATSim scripts-in-Java (Section 3.2.3), in many situations, it makes sense
to modify the input data after reading the files. The programming techniques for this are the
same as for other initial input generation.

Part IV will show how initial input was generated on a practical level—discussing, e.g., the different
types of original input data—for different scenarios. This section presents MATSim’s technical tools for
initial input generation.

8.1 Coordinate Transformations in Java

Section 2.3.4.3 has given information about coordinate systems. When programming in Java and MATSim
for input data generation, coordinate transformations derived from geotools (Geotools, accessed 2015)
can be used. For example,
CoordinateTransformation ct =

TransformationFactory.getCoordinateTransformation("WGS84", "WGS84_UTM33N");

would transform data given in WGS84 coordinates to data in UTM coordinates.

68

Chapter 8. Generation of the Initial MATSim Input 8.2. Network Generation

8.2 Network Generation

8.2.1 From OpenStreetMap

A fairly standardized way to generate a MATSim network is from OSM data. The process (roughly) goes
as follows:

1. Download the necessary xxx.osm.pbf file from http://download.geofabrik.de/osm.

2. Download a recent Osmosis build from http://wiki.openstreetmap.org/wiki/Osmosis.

3. The necessary command to extract the road network (approximately) is:
osmosis --read -pbf -fast file=xxx.osm.pbf \

--bounding -box top =47.701 left =8.346 bottom =47.146 right =9.019 \
completeWays=true --used -node --write -pbf allroads.osm.pbf

The bounding box can, e.g., be obtained from http://www.osm.org; it is in WGS84 coordinates.

4. It makes good sense to add the large roads of a much larger region. The necessary command
(approximately) is
osmosis --read -pbf -fast file=xxx.osm.pbf --tf accept -ways \

highway=motorway ,motorway_link ,trunk ,trunk_link ,primary ,primary_link \

--used -node --write -pbf bigroads.osm.pbf

5. The two files are merged with (approximately) the following command:
osmosis --rb file=bigroads.osm.pbf --read -pbf -fast allroads.osm.pbf \

--merge --write -xml merged -network.osm

An example script of how to convert the resulting merged-network.osm file into a MATSim network file
is RunPNetworkGenerator.java in matsim-code-examples.

8.2.2 From Other Sources

Networks can also be obtained from other sources. An example script of how to convert an EMME
network to MATSim is RunNetworkEmme2MatsimExample in matsim-code-examples. A problem with
EMME network files is that they use user-defined variables in non-standardized ways, meaning that
each converter has to be adapted to the specific situation.

Material to read VISUM files can be found by searching for the string “visum” in the code base, but is
currently not systematically maintained.

8.3 Initial Demand Generation

8.3.1 Simple Initial Demand

A simple script to generate a population with a single synthetic person with one initial is RunPOnePer-
sonPopulationGenerator in matsim-code-examples. A somewhat larger synthetic population is generated
by RunPPopulationGenerator in matsim-code-examples.

Note that coordinates in the population need to be consistent with coordinates in the network. Roughly
speaking, coordinates mentioned in the population file need to be in the same range as coordinates
mentioned in the network.

April 25, 2024 69

http://download.geofabrik.de/osm
http://wiki.openstreetmap.org/wiki/Osmosis
http://www.osm.org
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunPNetworkGenerator.java
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunNetworkEmme2MatsimExample
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunPOnePersonPopulationGenerator
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunPOnePersonPopulationGenerator
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunPPopulationGenerator

Chapter 8. Generation of the Initial MATSim Input 8.3. Initial Demand Generation

8.3.2 Realistic Initial Demand

A script to illustrate the generation of a more realistic population and initial demand is RunZPopulation-
Generator in matsim-code-examples, generating a sample population from a census file and writing it
to a file.

April 25, 2024 70

https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunZPopulationGenerator
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunZPopulationGenerator

9
Eqasim

Author (of this documentation): Kai Nagel

9.1 Basic Information

Entry point to documentation:
https://eqasim.org/.

Invoking the module:

Selected publications:
Hörl and Balac (2021).

71

https://eqasim.org/

Part IV

Additional core features

10
Additional MATSim Data Containers

Authors: Kai Nagel, Marcel Rieser, Andreas Horni

10.1 Attributable

MATSim operates on data types such as links, nodes, persons, or vehicles. Most of these data types
have attributes, such as free speed (for links) or coordinates (for nodes). Rather often, one would like
additional information for certain data types, such as “slope” for links, or “age” for persons. In order
to not modify the Java data types every time this becomes necessary, but still allow experimentation,
there are three approaches to address this situation. In principle, learning the most recent of those,
Attributable, should be sufficient. However, there is some older code that has not yet been modernized,
and for that one needs to know the older approaches. For these older approaches, see Sec. 21.4.1.

In XML, the Attributable approach looks as follows:
<person id="1">

<attributes >
<attribute name="age" class="java.lang.Integer">21</attribute >

</attributes >
<plan ...>

...

In this way, the age is attached to the person. Arbitrary attributes can be added in this way. They will
be read in, are accessible in code, and are also written out again.

The usage in code is as follows: Data types implementing the Attributable interface allow a syntax of
type
<object >. getAttributes (). putAttribute(String key , DataType value) ;

The content can be retrieved by
DataType value =

(DataType) <dataType >. getAttributes (). getAttribute(String key) ;

It is important to do the cast into the correct type on the same line since getAttribute(...) actually
knows the runtime type of the attribute, and thus generates a meaningful error message when the cast
fails.

For a working example see RunPersonAttributesExample in matsim-code-examples.

Arbitrary data types can be added as attributes. However, writers and readers only exist for basic data
types such as numbers, strings, or enums. For data types that go beyond that, one needs to register
specific AttributeConverters.

74

https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunPersonAttributesExample

Chapter 10. Additional MATSim Data Containers 10.2. Time-Dependent Network

10.2 Time-Dependent Network

The network container was already described in Section 4.2.1. An important additional feature of the
network module is using time-dependent network attributes. Network state changes can thus be con-
sidered, as e.g., implied by accidents, or adaptive traffic control, with varying speed limits or driving
directions of lanes on multi-lane roads with heavily unbalanced loads over the course of a day. Attributes
that can be adapted are “free speed”, “number of lanes” and “flow capacity”.

The adaptation can be specified by adding the following two lines to the network config file section:
<param name="timeVariantNetwork" value="true" />
<param name="inputChangeEventsFile" value="path_to_change_events_file" />

An example snippet setting the free speed of three network links to zero looks something like this:
<networkChangeEvent startTime="03:06:00">

<link refId="12487"/>
<link refId="12489"/>
<link refId="12491"/>
<freespeed type="absolute" value="0.0"/>

</networkChangeEvent >

For a working example, see the file networkChangeEvents.xml in matsim-code-examples.

Alternatively, network change events can be added directly to the code. An example can be found in
the RunTimeDependentNetworkExample in matsim-code-examples class.

Change values of type absolute need to be given in SI units, which means speeds in meters per
second and flow capacities in vehicles per second.

10.3 Subpopulations

The population container was also already discussed earlier, in Section 4.2.2. A powerful extension of
the standard population can be achieved by making each person a member of a specific subpopulation.
This can be achieved by the following syntax:
<person id="reroute_0">

<attributes >
<attribute name="subpopulation" class="java.lang.String" >urbanTravelers </attribute >

</attributes >
<plan selected="yes">

...

It is then possible to define different replanning strategies (Section 4.6) for each sub-population, e.g.,
<module name="strategy" >

<parameterset type="strategysettings" >
<param name="strategyName" value="ChangeTripMode" />
<param name="weight" value="0.1" />
<param name="subpopulation" value="urbanTravelers"/>

</parameterset >
</module >

The same is possible with scoring (Section 10), e.g.,
<module name="planCalcScore" >

<parameterset type="scoringParameters" >
...
<param name="subpopulation" value="urbanTravelers" />
<parameterset type="activityParams" >

...
</parameterset >
...
<parameterset type="modeParams" >

...
</parameterset >
...

</module >

See RunSubpopulationsExample in matsim-code-examples for an example.

April 25, 2024 75

https://github.com/matsim-org/matsim-code-examples/search?q=filename:networkChangeEvents.xml
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunTimeDependentNetworkExample
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunSubpopulationsExample

Chapter 10. Additional MATSim Data Containers 10.4. Counts

10.4 Counts

By providing a counts input file and configuring the counts config file section, MATSim plots link volume
comparisons between hourly simulated and counted values for motorized individual traffic (Horni and
Grether, 2007).

Simulating sample populations requires scaling simulated volumes by the countsScaleFactor parameter,
e.g., for a 10% population this parameter needs to be set to 10.

Input The following listing shows an example of a counts.xml input file required for traffic count
comparisons.
<?xml version="1.0" encoding="UTF -8"?>
<counts name="example" desc="example counting stations" year="2015">

<count loc_id="2" cs_id="005">
<volume h="1" val="10.0"></volume >
<volume h="2" val="1.0"></volume >
<volume h="3" val="2.0"></volume >
<volume h="4" val="3.0"></volume >
<volume h="5" val="4.0"></volume >
<volume h="6" val="5.0"></volume >
<volume h="7" val="6.0"></volume >
<volume h="8" val="7.0"></volume >
<volume h="9" val="8.0"></volume >
<volume h="10" val="9.0"></volume >
<volume h="11" val="10.0"></volume >
<volume h="12" val="11.0"></volume >
<volume h="13" val="12.0"></volume >
<volume h="14" val="13.0"></volume >
<volume h="15" val="14.0"></volume >
<volume h="16" val="15.0"></volume >
<volume h="17" val="16.0"></volume >
<volume h="18" val="17.0"></volume >
<volume h="19" val="18.0"></volume >
<volume h="20" val="19.0"></volume >
<volume h="21" val="20.0"></volume >
<volume h="22" val="21.0"></volume >
<volume h="23" val="22.0"></volume >
<volume h="24" val="23.0"></volume >

</count >
</counts >

For a working example, check counts100.xml in matsim-code-examples.

It starts with a header containing general descriptive information about the counts, including a year to
describe how current the data is. Next, for each link having real world counts data, hourly volumes can
be specified. The network-link is referenced by the loc_id attribute; in the example, it is link 2. The
attribute cs_id (counting station identifier) can be used to store an arbitrary description of the counting
station. Most often, it is used to note the original real world counting station to simplify future data
comparison. The hourly volumes, specified by the hour of the day and its value, are optional: That is,
a value does not have to be given for every hour. If, for a counting station, data is only available for
certain hours of the day (e.g., only during peak hours), it is possible to omit the other hours from the
XML listing. Note that the first hour of the day, from 0:00 am to 1:00 am, is numbered as “1”, and not
by “0” as is often the case in computer science.

Output The counts module prints overview summaries for the whole network, but also analyzes for
individual links. Also, a google maps-based visualization is available, showing each station with a its
load curve (see the example in Figure 10.1) in a pop-up window.

Balmer et al. (2009) have performed link volume comparisons for the Zürich scenario, with data based on
city level, cantonal level and national level (ASTRA, 2006). Usually, it is helpful to exclude a substantial
part of the outer range of the modeled study region in order to remove boundary effects.

April 25, 2024 76

https://github.com/matsim-org/matsim-code-examples/search?q=filename:counts100.xml

Chapter 10. Additional MATSim Data Containers 10.5. Facilities

Figure 10.1: Example for a link volumes comparison between simulation and road count values.

10.5 Facilities

Facilities are an optional element of MATSim; some modules, such as the destination innovation module
(Chapter 20), depend on it. If MATSim facilities are used, agents perform their activities in a specific
facility attached to a network link.

Facilities are included in the scenario by defining the facilities config file section and providing a
facilities file, approximately as follows.
...
<facilities name="test facilities for triangle network">

<facility id="1" x="60.0" y="110.0">
<activity type="home" />

</facility >
<facility id="10" x="110.0" y="270.0">

<activity type="education" />
</facility >

</facilities >

See RunWithFacilitiesExample.java in matsim-code-examples for an example.

In addition to activities that can be done in the facility, further location attributes, such as opening
times, can be specified. A working facilities example file can be found in the MATSim directory tree in
the examples/siouxfalls-2014 directory.

Facilities are mostly used by the MATSim Zürich group, in particular in the Zürich scenario, where
they are derived from the Federal Enterprise Census 2001 (Swiss Federal Statistical Office (BFS), 2001)
providing hectare level information. Detailed technical description of facilities generation is given by
Meister (2008). Comparable data is available in most countries from official sources, such as censuses,
and commercial sources, such as navigation network providers, yellow pages publishers or business
directories, and last but not least google and OSM (OpenStreetMap, 2015).

Loading a facilities file into MATSim by itself does not mean they will be used in the way one would
expect. MATSim originally worked without facilities, and in an effort to make the initial data requirements
minimal, facilities are still not needed to get MATSim up and running. However, if no facilities are

April 25, 2024 77

https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunWithFacilitiesExample.java

Chapter 10. Additional MATSim Data Containers 10.6. Households

provided, MATSim will auto-generate them, with one facility per link, write them to a file, and use them.
This has the effect that, if the facilities file is provided as input, it will be used.

For the time being, the core functionality of a facilities file is to contain the coordinate of the facility,
which may be different than a coordinate derived from the network, and thus allow higher spatial
resolution for activities. Any other functionality of the facilities, e.g., information about facility open-
ing times depending on activity type, needs to be switched on by other means. Currently, this is only
possible by using some class with a main method.

10.6 Households

Households are another optional element of MATSim. To load households into a scenario, the config file
must contain a section households. This section should specify the path to a file containing households
(parameter inputFile).

Again, loading the households file does not mean that it is used anywhere in the code; such functionality
needs to be switched on separately. Currently, no such functionality can be switched on from the config
file alone.

10.7 Vehicles

Vehicles are an optional element of MATSim. To load vehicles into a scenario, a config section
<module name="vehicles" >

<param name="vehiclesFile" value="/path/to/vehicles.xml.gz" />
</module >

needs to be added.1

Once more, just loading the vehicles does not use them; that needs to be configured separately. See
Section 11.5 for details.

1There used to be an additional “useVehicles” config switch. Since release 0.8.x that switch is gone.

April 25, 2024 78

11
Multi-modal QSim and its interaction with
routing

Authors: Kai Nagel, Marcel Rieser, Andreas Horni

11.1 Other Modes than Car: Introduction

The MATSim software began with the car mode of transport, since it was then the main mode in many
regions. However, the idea of integrating other modes has always been of interest, and in the last years,
considerable progress has finally been made.

There are three different types of mode implementations in MATSim:

• teleportation – a simplified mode that approximates travel time and travel distance by other
means, and only registers person departures and person arrivals. Cf. Figure 11.2.

• individual routing on the network (= network mode) – something like car, bicycle, or walking,
where the decision about turning movements at intersections is made by the persons themselves.
Cf. Figure 11.3.

• passenger modes – something like public transport, taxi, or “ride”, where the decision about
turning movements at intersections is made by someone or something else. Cf. Figure 11.4.

For each mode, these types need to be consistent between routing and QSim – if the router has not
computed detailed routing information, then the QSim cannot execute a detailed route. The design is
such that a stepwise approach is possible for a new mode:

1. Initially, any new mode can be added by adding it as teleported mode both in routing and in the
QSim.

2. As a next step, a detailed router can be used for the mode, but in the QSim it can remain as
teleported.

3. Finally, a detailed router can be complemented by a detailed execution in the QSim.

The purpose of this is to be able to include additional modes quickly, and improve their level of detail
over time. MATSim in fact runs with teleported modes only.1

1Albeit one probably has to include a “car” network so that facilities can be assigned to links, something like “postal
addresses” – an approach that was necessary to retrofit many already existing implementations of MATSim.

79

Chapter 11. Multi-modal QSim and its interaction with routing 11.2. Other Modes than Car: Routing Side

The following sections describe current MATSim multi-modal capabilities.

11.2 Other Modes than Car: Routing Side

First, it is considered how non-car plans, or more specifically non-car routes inside non-car legs, are
generated.

11.2.1 Routing Side: Teleportation

Teleportation Routing with Teleported Mode Speed A config entry such as
<module name="planscalcroute" >

<parameterset type="teleportedModeParameters" >
<param name="mode" value="pedelec" />
<param name="teleportedModeSpeed" value="4.167" />
<param name="beelineDistanceFactor" value="1.3" />
<param name="teleportedModeFreespeedFactor" value="null" />

</parameterset >
...

</module >

will generate a teleportation route whose travel distance is 1.3 times the beeline distance, and whose
travel time is that distance divided by 4.167meters per second.

This is useful when teleported mode travel times should not change in tandem with car freespeed travel
times, perhaps as a policy change result, or when teleported mode travel times are unrelated to car
travel times. One disadvantage: this approach does not take obstacles like water or mountain areas,
into account for the teleported modes.

Teleportation Routing with Teleported Mode Free Speed Factor A config entry such as
<module name="planscalcroute" >

<parameterset type="teleportedModeParameters" >
<param name="mode" value="pt" />
<param name="teleportedModeFreespeedFactor" value="2.0" />
<param name="teleportedModeSpeed" value="null" />
<param name="beelineDistanceFactor" value="null" />

</parameterset >
...

</module >

means that if the router encounters a leg with mode pt, it generates a “teleportation” route whose
travel distance is the same as, and travel time is twice that of, a freespeed car route.

This models public transit, assuming it travels along roughly the same routes as a car trip, but takes
twice as long (cf. Reinhold, 2006).

Teleportation Routing Defaults There are default teleportation routers for the modes walk, bike, ride (=
in car as passenger) and pt (= public transport). These are there for convenience, and so that studies
that do not spend a lot of time for their setup get comparable results. If you define any teleportation
router yourself, then all default teleportation routers are cleared, and there is a warning message. To
avoid that warning, use clearDefaultTeleportedModeParams.

Naming In the past, the Java code used the term ModeRoutingParams. This has now been changed to
TeleportedModeParams. However, the old syntax still works, and therefore may be encountered in user
and example code. In the config file, this has always been named teleportedMode....

April 25, 2024 80

Chapter 11. Multi-modal QSim and its interaction with routing 11.2. Other Modes than Car: Routing Side

11.2.2 Routing Side: Network Modes

The following syntax defines modes for which the router should generate network routes, i.e., routes
that contain a sequence of links that form a connected path from the origin to the destination:
<module name="planscalcroute" >

<param name="networkModes" value="car , pedelec" />
...

</module >

The above configuration specifies that plans containing
<leg mode="car"...>

as well as
<leg mode="pedelec"...>

will be treated by the network router.2

The router will route these modes on links that have the corresponding mode in the network file
(Figure 11.1, cf. Section 2.3.1.1).3

t

l r

b

o
car,bicycle,truck

car,bicycle

car,bicycle,truck

truck

truck

truck

Figure 11.1: Multi-modal network example.

If you try to set a network router for a mode for which also a teleportation router is defined (see
Section 11.2.1), then the code will complain that it cannot define two routers for the same mode.
There is a config switch clearDefaultTeleportedModeParams that clears all teleportation routers.

Evidently, that removes all default teleportation routers, so if you still need any of them, you now
have to manually enter them.

Often one may want that some vehicle types (e.g. bicycles) have a maximum speed that may be lower
than the speed limit of the link. For this, use
<module name="qsim">

<param name="vehiclesSource" value="modeVehicleTypesFromVehiclesData" />
...

</module >

and then use a mode vehicle type that has a maximum speed (see Section 11.5.1). This option is, for
historical reasons, in the qsim config group; it does however, also apply to network routing.4

2Before release 11.0, it used to be the case that one also had to configure travelTimeCalculator, setting separateModes

to true. This setting is now the default.
3Per the network file DTD, “car” is the default mode of each link as long as long as the link’s mode field is not explicitly

filled.
4More precisely, what happens is that that switch makes MATSim generate all mode vehicle types for all persons in the

population. And afterwards, both the router and the qsim will use these vehicles.

April 25, 2024 81

Chapter 11. Multi-modal QSim and its interaction with routing 11.3. Other Modes than Car: QSim Side

11.2.3 Routing Side: Passenger Modes

Passenger modes refers to modes that the traveller uses as passenger, e.g. public transit, taxi, or
autonomous vehicle. These are discussed in Chapters 12 and 18. They come with their own routers.

11.2.4 Other Routing Options

It is possible to register separate, possibly self-written routers for specific modes. This syntax is dis-
cussed in Section 21.6.9. The pre-configured extensions and contributions discussed in Section 11.3.4,
“multimodal”, public transport, taxis, come with corresponding routers.

In addition, the so-called “matrix based pt router” (Chapter ??) uses a list of transit stops and a matrix
of stop-to-stop travel times and travel distances; based on this information, it computes a teleported
walk leg to the next stop, another to the destination stop, and a last teleported walk leg to the final
destination.

The matrix-based pt router also illustrates that, given the QSim teleportation capability, it is possible
to come up with arbitrary routing algorithms for arbitrary modes, as long as they generate (expected)
travel times and (expected) travel distances. As said earlier, the teleportation facility of the QSim will
just use these two attributes at face value. Although with such an approach neither congestion nor
en-route replanning can be included, it is flexible and allows a fully modular addition of arbitrary modes
without having to interact with the QSim.

11.3 Other Modes than Car: QSim Side

Section 11.2 described several routing options, in particular network routes (consisting of sequences of
links) and “teleported” routes (containing only travel time and travel distance). This is now picked up
by corresponding functionalities in the QSim.

11.3.1 QSim Side: Teleportation

All modes not registered with the QSim in any way will be teleported (Figure 11.2). That is, the QSim
will process legs such as
<person ...>

<plan ...>
...
<leg mode="pedelec" >

<route type="generic" trav_time="00:14:44" distance="2374" ... />
</leg>
...

</plan>
...

</person >

For the above plan, the QSim will generate a departure event (for events, see Section 2.3.2) after the end
of the previous activity, and an arrival event 14minutes and 44 seconds later. The leg will be recorded
with a distance of 2 374meters. If distance is not used for scoring (cf. Chapter 10), it can also be left
out of the route.

Evidently, this is meant for processing teleported routes as described in Section 11.2.1. It is, however,
important to note that this will also process network routes. It is thus possible to introduce a new mode
by the following steps:

• First, have the mode teleported both for routing and in the QSim.

• Next, generate network routes during routing, but use teleporting in the QSim. This is, for example,
useful for more detailed bicycle routing as long as the mode is not congested.

April 25, 2024 82

Chapter 11. Multi-modal QSim and its interaction with routing 11.3. Other Modes than Car: QSim Side

ActivityEndEvent

PersonDepartureEvent

ActivityStartEvent

PersonArrivalEvent

TeleportationArrivalEvent
(“travelled” event)

Figure 11.2: Teleported mode.

• Finally, also register the mode as a main mode in the QSim. This is particularly approprate when
the mode is congested.

This makes it possible to introduce a new mode in smaller steps, first as a very approximately handled
teleportation mode, and then increasingly more realistic.

Note that the precise coding of a teleported leg has some peculiarities. For example, the start and end
link ID need to be given even if they are not really needed. In consequence, it is strongly recommended
to use the existing teleportation router, which is parametrized either in the beeline distance, or on the
car freespeed travel time. If that is not an option, it is recommended to write your own RoutingModule;
see TeleportationRoutingModule for a starting point.

11.3.2 QSim Side: Network Modes

Multiple modes on the same network are defined by the qsim config option of type
<module name="qsim">

<param name="mainMode" value="car ,truck ,bicycle" />
...

</module >

This examines the plan leg mode; if that leg mode corresponds to one of the listed main modes, it will
generate or obtain a vehicle for that leg and make it enter the network (Figure 11.3).

Evidently, the router needs to have generated network routes as in Section 11.2.2 for these modes.

If mode vehicles are used (Section 11.5.1), and some of them are slower than others, then fast vehicles
will not be able to pass slower vehicles. An alternative is to use the so-called Passing(Vehicle)Q, which
allows faster vehicles to pass slower vehicles while they are not in a queue (Section 11.5.2).

11.3.3 QSim Side: Explicitly Simulated Passenger Modes

With “driver” modes, such as car, bicycle, or also walk, travelers are also drivers, i.e., the entities
making decisions about turns at intersections, as well as arrivals (or not) on links. With “passenger”
modes, such as public transit or taxi, this changes; the traveler, for example, boards a bus, the bus
moves around in the network; the only decision the traveler has to make if she or he wants to get off
or not at the current stop. The bus, in turn, is a normal participant in the corresponding traffic system,

April 25, 2024 83

Chapter 11. Multi-modal QSim and its interaction with routing 11.3. Other Modes than Car: QSim Side

ActivityEndEvent

PersonDepartureEvent

VehicleEntersTrafficEvent
(old: Wait2LinkEvent)

LinkLeaveEvent LinkEnterEvent LinkLeaveEvent LinkEnterEvent

ActivityStartEvent

PersonArrivalEvent

PersonLeavesVehicleEventPersonEntersVehicleEvent

VehicleLeavesTrafficEvent

Figure 11.3: Network (= ‘main’) mode.

i.e., buses and taxis operate on the normal road network and can be caught in the same congestion as
cars and trucks.

This is exactly how it works in the MATSim QSim (Figure 11.4); taxis typically operate on the same
network as cars; pt vehicles may operate on the same network if their routes are defined so that they
use the same links as regular cars; etc. In these cases, their interactions are captured by the simulation.

ActivityEndEvent

PersonDepartureEvent

PersonEntersVehicleEvent

ActivityStartEvent

PersonArrivalEvent

PersonArrivalEvent
ActivityStartEvent (ptInteraction)
ActivityEndEvent
PersonDepartureEvent

PersonLeavesVehicleEvent

PersonDepartureEvent
ActivityEndEvent

ActivityStartEvent (ptInteraction)
PersonArrivalEvent

Figure 11.4: Passenger mode.

11.3.4 QSim Side: Departure Handlers

It is possible to register a separate departure handler for each mode; see Section 21.6.10 for the syntax.
There are also pre-configured extensions (see http://matsim.org/extensions) using this approach:

April 25, 2024 84

http://matsim.org/extensions

Chapter 11. Multi-modal QSim and its interaction with routing 11.4. Other Modes than Car: Scoring Side

• The multimodal extension moves all registered modes on separate, congestion-free networks.
This is better than teleportation, since the vehicles (or pedestrians) have defined positions at
each point in time, meaning that they can also re-plan, e.g., re-route (see Chapter ??).

• The public transport (pt) extension moves all registered modes with specific public transit vehicles
(see Chapter 12).

• The dynamic transport systems (dvrp) extension is able to move a taxicab or av mode as specified
in the corresponding section of the config file. See Chapter 18, and the taxicab or av extension.

11.4 Other Modes than Car: Scoring Side

For all modes mentioned in the plans, a corresponding scoring section must exist. See Section 10.2.1
for an example. MATSim will stop with an error message when scoring information for a mode is not
available.

11.5 Vehicle Types and Vehicles

11.5.1 Vehicle sources and vehicle IDs

Explicit vehicles
For a variety of reasons—e.g., vehicle-specific emissions calculations (Chapter 15), or vehicle-specific
maximum speeds (see below)—it may become necessary to assign different vehicle types to different
persons, modes, or trips. The (arguably) most “honest” approach to vehicles, in terms of micro-
simulation, is to generate a synthetic vehicle fleet. Each leg/route would then have to know which
vehicle it wants to use. This is indeed possible with the planned vehicle ID that MATSim route objects
can store. This functionality is switched on by first loading an additional vehicles file (see Section 10.7)
and then configuring the QSim as
<module name="qsim">

<param name="vehiclesSource" value="fromVehiclesData" />
<param name="usePersonIdForMissingVehicleId" value="false" />
...

</module >

(available since release 0.8.x). This states that every time the QSim needs a vehicle with a specific ID,
it will search for it in the vehicles data container, throwing an exception if it is not found there.

The MATSim design is slowly moving towards explicit vehicles. If “mode vehicles” are switched on (see
below), then a vehicle for each mode is generated for each synthetic person. These are afterwards also
written to file, which means that they are available for possible analysis.

A Fallback for Routes that do not Contain Vehicle IDs
In the above approach, vehicular routes need to provide vehicle IDs, otherwise the QSim will throw an
exception. Since algorithms to compute and maintain vehicle IDs during replanning are currently not
well developed within MATSim, an alternative is to assume that persons use a vehicle with the same ID
as the person. This is switched on by
<module name="qsim">

<param name="usePersonIdForMissingVehicleId" value="true" />
...

</module >

which is also the current default. With this configuration, it will still search for the vehicle ID in the route,
but if this is unavailable, it will instead use the person ID as vehicle ID. Without additional configuration,
it will then still search for the vehicle under that ID in the vehicles file.

April 25, 2024 85

Chapter 11. Multi-modal QSim and its interaction with routing 11.5. Vehicle Types and Vehicles

Alternative Vehicles Source: defaultVehicle

A default vehicles source is defined by
<module name="qsim">

<param name="vehiclesSource" value="defaultVehicle" />
...

</module >

This generates a default vehicle (typically a medium-sized 4-seater) every time a vehicle is needed and
is currently the default configuration.

Alternative Vehicles Source: modeVehicleTypesFromVehiclesData

So-called mode vehicles are configured by
<module name="qsim">

<param name="vehiclesSource" value="modeVehicleTypesFromVehiclesData" />
...

</module >

For this, the vehicles file (Section 10.7) needs to contain mode specific vehicle types, approximately as
follows:
<vehicleType id="car">

<maximumVelocity meterPerSecond="16.67"/>
<passengerCarEquivalents pce="1.0"/>
...

</vehicleType >
<vehicleType id="bicycle">

<maximumVelocity meterPerSecond="4.17"/>
<passengerCarEquivalents pce="0.25"/>
...

</vehicleType >

See config-with-mode-vehicles.xml in matsim-code-examples for a working example.

This approach can also be be programmed as script-in-Java; see RunMobsimWithMultipleModeVehicle-
sExample in matsim-code-examples.

11.5.2 Vehicle Placement and Behavior

Vehicle persistence
Vehicles need to be available where they are needed. In the real world it is, for example, difficult to
perform a trip by car, then another (non-circular) trip by public transit and then make another trip with
the same car as before, since the car will not be available at that location. The QSim is able to enforce
such behavior, with the setting
<module name="qsim">

<param name="vehicleBehavior" value="exception" />
...

</module >

This means that if a necessary vehicle is not available at the location where it is needed by the traveler,
the QSim throws an exception and aborts. This could be useful to debug a simulation where consistent
vehicle behavior is desired. Alternatively, synthetic travelers could have explicit within-day replanning
strategies (see Chapter ??) to cope with unexpectedly unavailable vehicles. In both cases, any attempt
to use an unavailable vehicle points to an error in the behavioral logic of the simulation.

In many standard situations, the above behavior will be too strict. For example, a vehicle may be shared
between family members, but one member will be late in returning a vehicle. For such situations,
<module name="qsim">

<param name="vehicleBehavior" value="wait" />
...

</module >

April 25, 2024 86

https://github.com/matsim-org/matsim-code-examples/search?q=filename:config-with-mode-vehicles.xml
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunMobsimWithMultipleModeVehiclesExample
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunMobsimWithMultipleModeVehiclesExample

Chapter 11. Multi-modal QSim and its interaction with routing 11.6. Legs, trips, and interaction activities

may be an option. Here, a driver will wait if a vehicle is not available. Errors in the coordination
logic, i.e., very long waits, will be punished via the MATSim scoring logic, thus leading to more robust
coordinations.

A final alternative is
<module name="qsim">

<param name="vehicleBehavior" value="teleport" />
...

</module >

With this setting, vehicles will be teleported to locations where they are needed.

Initial Vehicle Placement
For vehicle behavior of type exception and type wait, vehicles need to be at the correct location when
the QSim starts. Here, the default simulation currently places all vehicles at the home location—for
other variants, some additional code needs to be written or used, such as for the car sharing extension
(Chapter ??).

PassingQ
Once various vehicles have different maximum speeds, the standard QSim, even with multiple main
modes, is no longer sufficient, since it uses First In, First Out (FIFO) as the queuing discipline, meaning
that fast vehicles cannot pass slower vehicles. Here, the so-called Passing(Vehicle)Q can be used
instead. It replaces the FIFO sorting criterion—where vehicles are sorted by the sequence in which they
arrive on the link—by a sorting employing the so-called earliest link exit time, computed from link enter
time and freespeed travel time. Now, using the minimum of vehicle and link maximum speeds, the
freespeed travel time can be differentiated between vehicles, allowing fast vehicles to obtain an earlier
link exit time, even if they enter later than slow vehicles. Details and resulting fundamental diagrams
are given by Agarwal et al. (2015).

This option can be enabled by using
<module name="qsim">

<param name="linkDynamics" value="passingQ" />
...

</module >

in the qsim section of the config file.

11.6 Legs, trips, and interaction activities

MATSim has a plans format that alternates elements of type Activity with elements of type Leg. This
is modelled after the data model of GPS routing devices, which also use waypoints plus connections
between them.5

This also means that inter-modal trips are encoded using only activities and legs:
<activity type="home" ... />
<leg mode="walk" .../>
<activity type="car interaction" .../>
<leg mode="car" .../>
<activity type="car interaction" .../>
<leg mode="walk" .../>
<activity type="work" ... />

“Interaction” activities (in the Java code called “stage” activities) are inserted between legs. In conse-
quence, there are now interaction/stage activities, and “true” activities.6

5Much of MATSim is actually able to also deal with non-alternating sequences of activities and legs. However, at some point
we decided that staying with the strictly alternating concept actually makes sense. In consequence, only strictly alternating
plans are syntactically correct.

6The label for interaction/stage activities used to be defineable in MATSim, but has now been standardized.

April 25, 2024 87

Chapter 11. Multi-modal QSim and its interaction with routing 11.7. Access/egress routing

There is also functionality to extract trips: TripStructureUtils.getTrips(...). It does that by going
from a “true” activity to the next, and gobbling up everything that is in between.

However, trips are not native objects in MATSim. The reason for this design decision was that much
functionality of MATSim worked with alternating activities and legs, and it continued to work with
interaction/stage activities. Another argument is that trips may actually have multiple hierarchical
levels. For example, one might go from home to the airport, then fly to some destination, etc., but
the (sub-)trip to the airport might by itself be composed of, say, walk and public transport legs. In
consequence, a hierarchical format allowing multiple levels would have been needed. Overall, it was
decided that all of these changes would require too much effort, with unclear gains given that it was
possible to retrofit the existing “flat” format.

A consequence of this decision is that there is no data item to which one can attach properties of a
trip. This had become most urgent with something called a “routing mode”, which memorizes which
router was used to route a trip – for example, a pure walk trip can result both from a pure walk router
and from a public transport router. The current convention is to attach such information to all legs of a
trip, and to warn or abort if that information has become inconsistent between the legs of a trip.

11.7 Access/egress routing

The public transport (pt) router has always inserted access/egress legs to/from pt stops. This is now
also possible – and strongly recommended – for all other modes:
<module name="planscalcroute" >

<param name="accessEgressType" value="accessEgressModeToLink" />
...

</module >

or
config.plansCalcRoute (). setAccessEgressType(AccessEgressType.accessEgressModeToLink);

This is particularly important when using multi-modal networks. Without access/egress routing, it may
then happen that the desired mode (e.g. bicycle) is not allowed on the link to which the facility (or the
activity) is connected. For example, if the facility/activity is directly connected to a motorway.

Access/egress routing in this case will search for the nearest link with the desired mode, and then
create an access/egress leg to/from it.

A special case is if one wants to route the walk mode on the network. Since then that same walk mode
cannot be used for access/egress to/from the walk network, in this case MATSim introduces an additional
mode called non_network_walk. It will then demand teleportation parameters for this “bushwhacking”
mode.

11.8 Other

The simulation is able to handle time-variant networks (Lämmel et al., 2010, see Section 10.2), within-day
replanning (Dobler, 2009, see Chapter ??) and traffic lights (Neumann, 2008; Grether et al., 2011, 2012,
see Chapter ??). An earlier multimodal approach, targeted at overcoming the teleportation estimates of
non-motorized modes, and particularly focused on pedestrians, is presented in Chapter ??.

April 25, 2024 88

12
Modeling Public Transport with MATSim

Author: Marcel Rieser

12.1 Basic Information

Entry point to documentation:
https://matsim.org/docs → Tutorials → Simulation of public transport

Invoking the module:
The module is invoked by enabling it in the configuration.

Selected publications:
Rieser (2010)

12.2 Introduction

Public transport—or (public) transit as it is sometimes called—plays an important role in many transport
planning measures, even those initially targeting only non-transit modes. By making other modes more
or less attractive (e.g., by providing higher capacity with additional lanes, allowing higher speeds, or
charging money by setting up area road pricing), travelers might reconsider their mode choice and
switch to public transport (pt) from other modes, or vice versa. Such changes can also occur when
transit infrastructure is changed; additional bus lines, changed tram routes with different stops served,
or altered headways—all are important for travelers on specific lines, or public transport in general.
Around 2007, interest grew in extending MATSim to support detailed simulation of modes other than
private car traffic, particularly public transport.

In a first step, MATSim was extended so that modes other than car would be teleported; agents would
be removed from one location and placed at a later point of time—corresponding to estimated travel
time—at their destination location, where they could commence their next activity. Together with a
simple mode-choice module, randomly replacing all transport modes in all plan legs and a simple travel
time estimation for modes different than car, first case studies resulting in modal share changes were
performed using MATSim (Rieser et al., 2009; Grether et al., 2009). This teleportation mode is now
available, by default, in MATSim and still a very good fallback option to get a multimodal scenario up
and running with as little data as possible.

89

https://matsim.org/docs

Chapter 12. Modeling Public Transport with MATSim 12.3. Data Model and Simulation Features

In a second step, QSim was extended to support detailed simulation of public transport vehicles serving
stops along fixed routes with a given schedule (Rieser, 2010). The next section describes, in more detail,
data required and resulting features for this detailed public transport simulation.

12.3 Data Model and Simulation Features

MATSim supports very detailed modeling of public transport; transit vehicles run along the defined
transit line routes, picking up and dropping off passengers at stop locations, while monitoring transit
vehicles’ capacities and maximum speeds. Data used to simulate public transport in MATSim can be
split in three parts:

• stop locations,

• schedule, defining lines, routes and departures, and

• vehicles.

This data is stored in two files; vehicles are defined in one file, stop locations and schedule in another.
Examples of such files can be seen in Section 12.4.1 and Section 12.4.2, respectively.

The data model is comparable to other public transport planning software, but simplified in several
respects. A line typically has two or more routes: one for each direction, and additional routes when
vehicles start (or end) their service at some point on the full route (coming from, or going to, a depot).
Each transit route contains a network route, specifying on which network links the transit vehicle drives,
as well as a list of departures, providing information about what time a vehicle starts at the first route
stop. A route also includes an ordered list of stops served, along with timing information specifying
when a vehicle arrives or leaves a stop. This timing information is given as offsets only, to be added
to departure time at the first stop. Each departure contains the time when a vehicle starts the route
and a reference to the vehicle running this service. Because timing information is part of the route,
routes with the same stops sequence may exist, differing only in time offsets. This is often the case
with bus lines, that take traffic congestion and longer rush hour waiting times at stops into account in
the schedule.

Stop locations are described by their coordinates and an optional name; they must be assigned to
exactly one line of the network for the simulation. Thus, they can be best compared to “stop points” in
VISUM. There is, currently, no logical grouping of stop locations to build a “stop area”; this is a cluster
of stops often sharing the same name, but located on different intersection arms, served by different
lines, many with transfer corridors for passengers.

Each vehicle belongs to one vehicle ’type’, which describes various characteristics, like seating and
standing capacity (number of passengers), its maximum speed and how many passengers can board
or depart a vehicle per second.

This data model already supports several advanced public transport modeling aspects: varying travel
speeds along routes during different times of day (important for improved simulation realism), using
diverse vehicle types on routes at different times of day (interesting for schedule economic analysis) and
re-using transit vehicles for multiple headways along one or different routes (allows vehicle deployment
planning optimization, or research on delay-propagation effects).

With these data sets, the QSim will simulate all transit vehicle movements. The vehicles will start
with their first route stop at the given departure time, allow passengers to enter and then drive along
their route, serving stops. At each stop, passengers can enter or leave the vehicle. The simulation
generates additional, transit-related events whenever a transit vehicle arrives or departs at a stop,
when passengers enter or leave a vehicle, but also when a passenger cannot board a vehicle because
its capacity limit is already reached. This allows for detailed analyses of MATSim’s public transport
simulations.

April 25, 2024 90

Chapter 12. Modeling Public Transport with MATSim 12.4. File formats

For passengers to use public transport in MATSim, they must be able to calculate a route using transit
services. For this, MATSim includes a public transport router that calculates the best route to the desired
destination with minimal cost, given a departure time. Costs are typically defined only as travel time
and a small penalty for changing lines, but other, more complex cost functions could be used.

The routing algorithm is based on Dijkstra’s shortest path algorithm (Dijkstra, 1959), but modified to
take multiple possible transit stops, around the start and end coordinates, into account to find a route.
Multiple start and end stops must be considered to generate more realistic transit routes; otherwise,
agents could be forced to travel first in the wrong direction, or wait at an infrequently served bus
stop, instead of going a bit further to a busy subway stop location. By modifying the shortest path
algorithm to work with multiple start and end locations, a considerable performance gain was achieved
when compared to the basic (and somewhat naive) implementation that calculated a route for each
combination of start/end location and then chose the best outcome.

12.4 File formats

12.4.1 transitVehicles.xml

To simulate public transport in MATSim, two additional input files are necessary. One is
transitVehicles.xml, which describes vehicles serving the lines: big buses, small buses, trains or
light rail vehicles and description of each vehicle’s passenger transport capacity.

The Public Transport (PT) vehicle description is split into two parts. In the first part, vehicle types must
be described, specifying how many passengers a vehicle can transport. (Note that the term “vehicle”
can refer to multiple vehicles in reality, e.g., a train with several wagons should be specified as one long
vehicle with many seats). In the second part, all actually used vehicles must be listed. Each vehicle
has an identifier and refers to a previously defined vehicle type. The following shows an example of a
such a file, describing one vehicle type, and then two vehicles of that type.
<vehicleDefinitions ... />

<vehicleType id="1">
<description >Small Train</description >
<capacity >

<seats persons="50"/>
<standingRoom persons="30"/>

</capacity >
<length meter="50.0"/>
<passengerCarEquivalents pce="3.0"/>

</vehicleType >
<vehicle id="tr_1" type="1"/>
<vehicle id="tr_2" type="1"/>

</vehicleDefinitions >

12.4.2 transitSchedule.xml

The second, rather complex, file necessary to simulate public transport is transitSchedule.xml, con-
taining information about stop facilities (bus stops, train stations, or other stop locations), and transit
services.

In the first part, stop facilities must be defined; each one is given a coordinate, an identifier and a
reference to a network link. The stop can only be served by vehicles driving on that specified link. It is
also possible to specify both a name for the stop and whether other vehicles are blocked when a transit
vehicle halts at a stop. This last attribute is useful when modeling e.g., different bus stops, where one
has a bay, while at another, the bus must stop on the road.

After stop facilities, transit lines, their routes and schedules are described. This is a hierarchical data
structure; each line can have one or more routes, each with a route profile, network route, and list of
departures. The following listing is an example of a basic, but complete transit schedule.

April 25, 2024 91

Chapter 12. Modeling Public Transport with MATSim 12.4. File formats

<transitSchedule >
<transitStops >

<stopFacility id="1" x="990.0" y="0.0" name="Adorf"
linkRefId="1" isBlocking="false"/>

<stopFacility id="2" x="1100.0" y="980.0" name="Beweiler"
linkRefId="2" isBlocking="true"/>

<stopFacility id="3" x="0.0" y="10.0" name="Cestadt"
linkRefId="3" isBlocking="false"/>

</transitStops >
<transitLine id="Blue Line">

<transitRoute id="1">
<description >Just a comment.</description >
<transportMode >bus</transportMode >
<routeProfile >

<stop refId="1" departureOffset="00:00:00"/>
<stop refId="2" arrivalOffset="00:02:30" departureOffset="00:03:00"

awaitDeparture="true"/>
<stop refId="3" arrivalOffset="00:05:00" awaitDeparture="true"/>

</routeProfile >
<route >

<link refId="1"/>
<link refId="2"/>
<link refId="3"/>

</route >
<departures >

<departure id="1" departureTime="07:00:00" vehicleRefId="12"/>
<departure id="2" departureTime="07:05:00" vehicleRefId="23"/>
<departure id="3" departureTime="07:10:00" vehicleRefId="34"/>

</departures >
</transitRoute >

</transitLine >
</transitSchedule >

Each transit line must have a unique ID. Each transit route has an ID which must be unique within
that one line, allowing the same route ID to be used with different lines. The transportMode describes
network links where the line runs. (Actually, this is not yet in force, although it might be in the future.
It would currently be possible to let a bus run on train links in the simulation.)

The routeProfile describes the stops this route serves and the timings at these stops. The route

itself describes the series of network links the transit vehicle’s driver must navigate, often referred to
as network route. Note that the complete route, i.e., all links the vehicle traverses, must be listed
in the route, not only those with stops. All specified stops should occur along this route in correct
order. Time offsets given for each stop in the routeProfile describe relative time offsets to a departure
time from the first stop, listed unter departures. If a bus has a departure at 7 am, and stop 2 has a
departureOffset of 3minutes, this means that the bus is expected to depart at 7:03 am from the specific
stop. All stops in the route profile must have a departure offset defined, except for the last one. All
stops, except the first one, can, optionally, have an arrival offset defined. This is useful for large trains
that stop for several minutes at a station; helping the routing algorithm find connecting services at the
correct time, namely the expected train arrival time.

As the last part of a transit route description, a departures list should be given. Each departure has an
ID, which must be unique within the route, giving the departure time at the first stop of the specified
route profile. The departure also specifies the vehicle (which must be defined in the previous transit
vehicle list) with which the service should be run.

Because of its complexity, transit schedules often contain small mistakes that will result in an error when
the simulation runs. Typical examples include: missing links in the network route, or incorrect defined
stop order on the network route. To ensure that a schedule avoids such issues before the simulation
starts, a special validation routine is available. It is easiest to use from the GUI, see Figure 12.1;

April 25, 2024 92

Chapter 12. Modeling Public Transport with MATSim 12.4. File formats

Figure 12.1: MATSim GUI tools.

alternatively, it can be run from the command line.1 If run, this validator will print out a list of errors
or warnings, if any are found, or show a message that the schedule appears to be valid.

12.4.3 Events for a public transit trip

Figure 12.2: Events for a complex public transit trip.

1From the command line:
java -Xmx512m -cp /path/to/matsim.jar

org.matsim.pt.utils.TransitScheduleValidator

/path/to/transitSchedule.xml /path/to/network.xml

April 25, 2024 93

Chapter 12. Modeling Public Transport with MATSim 12.5. Swiss Rail Raptor

12.5 Swiss Rail Raptor

A fast PT router implementation is the so-called SwissRailRaptor. It was included into the MATSim
main repository in release 12; since release 13 it is the default.2 More information can currently
(May’21) be found here: https://github.com/SchweizerischeBundesbahnen/matsim-sbb-extensions#

swissRailRaptor.

12.6 Running with small sample sizes

Running simulations with a reduced population sample leads to artifacts when public transport is used.
In a simulation with a downsampled demand, network capacity is reduced accordingly to accommodate
the fact that fewer private cars are on the road. Yet because 100% of public transport vehicles must
run (albeit with reduced passenger capacity) in order to make sense of the schedule, these pt vehicles
may use up too much of the flow capacity.

The way out, at this point, is to reduce each PT vehicle’s passengerCarEquivalents value (see Sec-
tion 12.4.1) manually.

This, however, will lead to another artefact: Assume a link with a capacity of 900/h, i.e. 1 vehicle every
4 seconds. Now assume a flow capacity factor of 0.01, resulting in 1 vehicle every 400 seconds for that
specific link. This means that when a car leaves the link, an immediately following vehicle has to wait
for 400 seconds until the following vehicle can leave the link. This is called “capacity accumulation” in
the code – after a vehicle has left the link, flow capacity needs to be accumulated until the next vehicle
can leave.

Now if that following vehicle is a PT vehicle, it will be accordingly delayed. This leads to spurious delays,
occuring when a PT vehicle has “bad” luck, and otherwise not.

A way to reduce this problem is the parameter pcuThresholdForFlowCapacityEasing in the
QSimConfigGroup (currently (May’21) only available in Java, not from config file). The syntax approxi-
mately is

config.qsim (). setPcuThresholdForFlowCapacityEasing(0.5);

The assumption is that pt vehicles will be downscaled in the vehicle description in their Passenger Car
Unit (PCU) values, but cars will not. For example, in a 10% scenario, a bus with a PCU of 3 might be
entered with a value of 0.3. A value of, say, 0.5 for pcuThresholdForFlowCapacityEasing now means
that all vehicles with PCU values of 0.5 or smaller do not have to wait for capacity accumulation.

There is some discussion at the corresponding pull request3 and in the QA.4

12.7 Possible Improvements

While the ability to simulate public transport was a big advance for MATSim, several elements could be
improved:

• The data model (and thus, the simulation) does not fully support some real world transit lines:
for example, circular lines with no defined start and end cannot be easily modeled. Also, split
trains cannot be modelled: In MATSim, only one direction can go through; for the other, the

2If needed, the previous (much slower) transit router can be configured from the config by

<module name="transit" >

<param name="routingAlgorithmType" value="DijkstraBased"/>

...

</module >
3https://github.com/matsim-org/matsim-libs/pull/55
4https://github.com/matsim-org/matsim-code-examples/issues/395

April 25, 2024 94

https://github.com/SchweizerischeBundesbahnen/matsim-sbb-extensions#swissRailRaptor
https://github.com/SchweizerischeBundesbahnen/matsim-sbb-extensions#swissRailRaptor
https://github.com/matsim-org/matsim-libs/pull/55
https://github.com/matsim-org/matsim-code-examples/issues/395

Chapter 12. Modeling Public Transport with MATSim 12.7. Possible Improvements

synthetic traveller would have to change trains. Some bus or train lines also have stops where
only boarding or alighting the vehicle is allowed, but not both (e.g., overnight trains with sleeper
cabins). At the moment, MATSim always allows boarding and alighting at stops, leading to agents
e.g., using a train with sleeper cabins for a short trip; in reality, they would be denied boarding
without a reservation for a longer trip.

• The public transport router available and used by MATSim by default is strictly schedule-based. It
assumes vehicles can keep up with the schedule and that enough passenger capacity is provided.
In some regions, where transit is chronically delayed and overcrowded, MATSim’s PT router will
consistently advise agents to use routes that will perform badly in the simulation. Additional
feedback from the simulation back to the router, as also done in the MATSim private car router,
is available as so-called events-based public transit router (Chapter ??), but is not integrated into
the main code base.

• Currently, public transit fares can be modelled using the alternative specific constant, monetary-
DistanceRate, and dailyMonetaryConstant in the scoring parameters. Whereas the former two are
useful to model single tickets, the latter can be used to model e.g. monthly subscription tickets.
Note that the alternative specific constant is applied to each public transit trip, i.e. it is paid only
once no matter how many transfers there are. However, this is not a practical model of many
real world fare systems, especially if fares differ by public transit mode, operator, route chosen
or combinations thereof. The heterogeneity of fare systems worldwide and the lack of computer
readable fare data are major obstacles here. General Transit Feed Specification (GTFS) feeds can
contain fare information, but more often than not those fiels are not filled out. Another issue
is the decision between single trip tickets and monthly or yearly subscription tickets. Usually
MATSim models contain only one typical workday, but no weekends. This makes it difficult to
determine whether a subscription ticket for a month would be cheaper than single tickets for
each trip. There is work by ETH Zürich on fares in Switzerland.5

5https://gitlab.ethz.ch/ivt-vpl/populations/ch-pt-utils,
https://doi.org/10.3929/ethz-b-000342816

April 25, 2024 95

https://gitlab.ethz.ch/ivt-vpl/populations/ch-pt-utils
https://doi.org/10.3929/ethz-b-000342816

10
A Closer Look at Scoring

Authors: Kai Nagel, Benjamin Kickhöfer, Andreas Horni, David Charypar

a
cc

u
m

.
sc

o
re

@home @workplace @lunch

time

workplace opening time

car wlk

sc
o

re

10.1 Good Plans and Bad Plans, Score and Utility

As outlined in Section 1.4 and by Figures 1.1 and 1.4, MATSim is based on a co-evolutionary algorithm:
Each individual agent learns by maintaining multiple plans, which are scored by executing them in
the mobsim, selected according to the score and sometimes modified. In somewhat more detail, the
iterative process contains the following elements:

Mobsim The mobility simulation takes one “selected” plan per agent and executes it in a synthetic
reality. This may also be called network loading.

Scoring The actual performance of the plan in the synthetic reality is taken to compute each executed
plan’s score.

Replanning consists of several steps:

1. If an agent has more plans than the maximum number of plans (a configuration parameter),
then plans are removed according to a (configurable) plan selector (choice set reduction,
plans removal).

2. For some agents, a plan is copied, modified and then selected for the next iteration (choice
set extension, innovation).

3. All other agents choose between their plans (choice).

97

Chapter 10. A Closer Look at Scoring 10.2. The Current Charypar-Nagel Utility Function

An agent’s plans in a given iteration may be considered the agent’s choice set in that iteration. As a
result, steps 1 and 2 of replanning modify the choice set, while step 3 implements the actual choice
between options. Choice is typically based on the score; higher score plans are more likely to be
selected. This is discussed in more detail in Chapters 22.6 and 22.6. For the time being, note that the
three steps of replanning must cooperate for the approach to work: the plans removal step should
remove “bad” plans, the innovation step should generate “good” plans, and the choice should, in
general, select good plans. Here, “good” means “able to obtain a high score in the mobsim/scoring”.
Fortunately, due to its evolutionary concept, the approach is fairly robust: the innovation step does not
always have to generate good solutions; it is sufficient if some of the solutions are good and lead to a
high score.

With this, it is clear that scoring is a central element of MATSim. Only solutions obtaining a high score
will be selected by the agent and survive the plans removal step. Thus, the scoring function needs to
be “correct” for a given scenario, meaning, more or less, that plans “performing well” obtain a higher
score than plans that “do not perform well”. Whether a performance is good or not, is decided, in the
end, by travelers living in a region: some may prefer a congested car trip, others may prefer a crowded,
but affordable, trip by public transit, while others may prefer using the bicycle, even in bad weather.

The typical way to bridge this gap is to use econometric utility functions, for example from random utility
models (e.g., Ben-Akiva and Lerman, 1985; Train, 2003) for the score. However, in Artificial Intelligence
(AI), utility functions may also be used in a more general way: for example, the score that each individual
agent (or the system as a whole) wants to, or should, optimize (Russel and Norvig, 2010). For these
reasons, the terms “score” and “utility” are normally interchangeable in the MATSim context. Since we
will need the concept of a marginal utility, this chapter will mostly speak of ’utility’, since it is a bit
unusual to talk about ’marginal score’.

The user can configure a large number of parameters to specify the scoring function. One can also add
to the scoring function, or replace it.

However, because MATSim is based on complete day plans, the application of choice models for parts
of day plans only (for example, mode choice) is not straightforward, as detailed in Section ??. Because
of the absence of complete-day utility functions in the literature, MATSim has started with the so-called
Charypar-Nagel scoring or utility function (Section 10.2). This scoring function was, at times, modified,
extended, or replaced for specific investigations (Section 10.6). Readily applicable estimates for a full-
day utility function are not yet available, as discussed in Section ??.

10.2 The Current Charypar-Nagel Utility Function

10.2.1 Mathematical Form

The first, and still basic, MATSim scoring function was formulated by Charypar and Nagel (2005), loosely
based on the Vickrey model for road congestion, as described by Vickrey (1969) and Arnott et al. (1993).
Originally, this formulation was established for departure time choice. However, all studies performed
so far indicate that the MATSim function is also appropriate for modeling further choice dimensions.

10.2.2 Basic Function

For the basic function, the utility of a plan Splan is computed as the sum of all activity utilities Sact,q
plus the sum of all travel (dis)utilities Strav,mode(q):

Splan =

N−1∑

q=0

Sact,q +

N−1∑

q=0

Strav,mode(q) (10.1)

April 25, 2024 98

Chapter 10. A Closer Look at Scoring 10.2. The Current Charypar-Nagel Utility Function

with N as the number of activities. Trip q is the trip that follows activity q. For scoring, the last activity
is merged with the first activity to produce an equal number of trips and activities.

10.2.3 Activities

The utility of an activity q is calculated as follows (see also Charypar and Nagel, 2005, p. 377ff):

Sact,q = Sdur,q + Swait,q + Slate.ar,q + Searly.dp,q + Sshort.dur,q . (10.2)

The individual contributions are defined as follows:

Performing an activity The expression

Sdur,q = βperf · ttyp,q · ln(tdur,q/t0,q) (10.3)

is the utility of performing activity q. tdur,q is the performed activity duration, βperf is related to the
marginal utility of activity duration (or marginal utility of time as a resource, the same for all activities;
see Section 10.2.7), and t0,q is the duration where utility starts to be positive. Opening times of activity
locations are taken into account.

Properties of this term at its default setting typicalDurationScoreComputation=relative are as follows:
With this setting, t0,q is defined by the expression t0,q := ttyp,q · exp(−1/prioq), where prioq is a
configurable parameter. This allows to re-write Equation (10.3) as

= βperf · ttyp,q · ln(tdur,q/ttyp,q) + βperf · ttyp,q · 1

prioq
. (10.4)

At the typical duration (i.e. tdur,q = ttyp,q), the first term is zero, and thus all activity types with the
same value of prioq generate the same relative score of βperf /prioq per hour at their typical durations.

In addition, the slope of all activities is

∂
∂tdur,q

(
βperf · ttyp,q · ln(tdur,q/ttyp,q) + βperf · ttyp,q · 1

prioq

)
=

βperf · ttyp,q
tdur,q

in general, and βperf at their typical durations.

Fig. 10.1 shows how this functional form reacts to changes of ttyp, prioq, or βperf .

prioq should be left at its default value of one since other settings have never been systematically
explored.

Waiting The expression

Swait,q = βwait · twait,q

denotes waiting time spent, for example, in front of a still-closed store; βwait is the so-called direct (see
Section 10.2.7) marginal utility of time spent waiting; and twait,q is the waiting time. We recommend
leaving βwait at its default value of zero, except if good data about this effect is available, and the
concept of the opportunity cost of time is well understood. Also see Section 10.2.8.

Late arrival The expression

Slate.ar,q =

{
βlate.ar · (tstart,q − tlatest.ar,q) if tstart,q > tlatest.ar,q
0 else

April 25, 2024 99

Chapter 10. A Closer Look at Scoring 10.2. The Current Charypar-Nagel Utility Function

0 1 2 3 4 5 6 7 8 9 10 11
−20

0
20
40
60
80

S d
ur

,q
βperf=6/h, ttyp=8h, prio=1

change of ttyp to 2h

0 1 2 3 4 5 6 7 8 9 10 11
−20

0
20
40
60
80

S d
ur

,q

(6/h, 8h, 1)
change of prio to 2

0 1 2 3 4 5 6 7 8 9 10 11
−20

0
20
40
60
80

tdur,q

S d
ur

,q

(6/h, 8h, 1)
change of βperf to 3/h

Figure 10.1: Reward for performing an activity when typicalDurationScoreComputation is set to
relative. TOP: Effect of changing the typical duration. MIDDLE: Effect of changing prio.
BOTTOM: Effect of changing βperf . Note how, in the TOP plot, the score at the typical duration
is proportional to the typical duration.

specifies the late arrival penalty, where tstart,q is the starting time of activity q, and tlatest.ar is the
latest possible penalty-free activity starting time—for example, the starting time of the office core hours,
or the starting time of an opera or theater performance.

6 6.5 7 7.5 8 8.5 9 9.5 10

−20

0

tstart,q

S l
at

e.
ar

,q

(tstart,q = 8, βlate.ar = −18/h)

Figure 10.2: Penalty for arriving late.

Early departure The expression

Searly.dp =

{
βearly.dp · (tearliest.dp,q − tend,q) if tend,q < tearliest.dp,q
0 else

defines the penalty for not staying long enough, where tend,q is the actual activity ending time, and
tearliest.dp,q is the earliest possible activity end time q. We recommend leaving βearly.dp at its default
value of zero, except if good data about this effect is available.

April 25, 2024 100

Chapter 10. A Closer Look at Scoring 10.2. The Current Charypar-Nagel Utility Function

Activity duration too short The expression

Sshort.dur,q =

{
βshort.dur · (tshort.dur,q − tdur,q) if tdur,q < tshort.dur,q
0 else

is the penalty for a ’too short’ activity, where tshort.dur is the shortest possible activity duration. We rec-
ommend leaving βshort.dur at its default value of zero, except if good data about this effect is available.

Config syntax The config syntax (config version v2) is approximately
<module name="planCalcScore" >

<parameterset type="scoringParameters" />
<param name="subpopulation" value="null" />
<param name="performing" value="6.0" />
<param name="waiting" value=" -0.0" />
<param name="lateArrival" value=" -18.0" />
<param name="earlyDeparture" value=" -0.0" />
...
<parameterset type="activityParams" >

<param name="activityType" value="work" />
<param name="typicalDuration" value="08:00:00" />
<param name="openingTime" value="07:00:00" />
<param name="latestStartTime" value="09:00:00" />
<param name="closingTime" value="19:00:00" />
...

</parameterset >
...

</parameterset >
...

</module >

There can be different sets of scoringParameters for different subpopulations.

10.2.4 Travel

Travel disutility for a leg q is given as

Strav,q = Cmode(q) + βtrav,mode(q) · ttrav,q + βm · ∆mq
+(βd,mode(q) + βm · γd,mode(q)) · dtrav,q + βtransfer · xtransfer,q

(10.5)

where:

• Cmode(q) is a mode-specific constant.

• βtrav,mode(q) is the direct (see Section 10.2.7) marginal utility of time spent traveling by mode.
Since MATSim uses and scores 24-hour episodes, this is in addition to the marginal utility of time
as a resource (again, see Section 10.2.7).

• ttrav,q is the travel time between activity locations q and q + 1.

• βm is the marginal utility of money (normally positive).

• ∆mq is the change in monetary budget caused by fares, or tolls, for the complete leg (normally
negative or zero).

• βd,mode(q) is the marginal utility of distance (normally negative or zero).

• γd,mode(q) is the mode-specific monetary distance rate (normally negative or zero).

• dtrav,q is the distance traveled between activity locations q and q + 1.

• βtransfer are public transport transfer penalties (normally negative).

April 25, 2024 101

Chapter 10. A Closer Look at Scoring 10.2. The Current Charypar-Nagel Utility Function

• xtransfer,q is a 0/1 variable signaling whether a transfer occurred between the previous and current
leg.

In addition, there are daily monetary and utility constants that are applied if the mode is used at least
once. These can be used, e.g., to model car ownership fixed costs.

The config syntax (config version v2) is approximately
<module name="planCalcScore" >

<parameterset type="scoringParameters"/>
<param name="subpopulation" value="null" />
... // parameters that refer to activity scoring
<param name="marginalUtilityOfMoney" value="1.0" />
<param name="utilityOfLineSwitch" value=" -1.0" />
<parameterset type="modeParams" >

<param name="mode" value="car" />
<param name="dailyMonetaryConstant" value=" -5.3" />
<param name="dailyUtilityConstant" value="0.0" />
<param name="constant" value="0.0" />
<param name="marginalUtilityOfDistance_util_m" value="0.0" />
<param name="marginalUtilityOfTraveling_util_hr" value=" -6.0" />
<param name="monetaryDistanceRate" value=" -0.0002" />

</parameterset >
...

</module >

Equation (10.5) is the direct utility contribution of travel; see Section 10.2.7 for the the full indirect utility
as well as the relation to the Value of Travel Time Savings (VTTS), and Chapter ?? for a more general
discussion.

Distance contributes to disutility in two ways. First, it is included in a direct manner via βd,mode(q),
which is normal for modes involving physical effort, like walking or cycling. Second, distance is also
included monetarily via βm · γd,mode(q), which is normal for car or pt mode, where monetary costs
increase depending on distance.

The distance cost rate, γd,mode(q), is given in “monetary units per meters”. In Germany, the
distance-based marginal costs are approx. 18ct/km, resulting in monetaryDistanceRate=-0.00018,

where the unit is Eu/m.

10.2.5 Illustration

Figure 10.3 illustrates the scoring function. Time runs from left to right. The example shows part of an
executed schedule, with home, work, and lunch activities, connected by a car and walk leg.

Activities are scored with concave functions, modeling decreasing returns to spending more time at the
same activity. Travel, in contrast, is modeled with downward sloping straight lines, where the slope may
differ for different modes of transport and there may be an initial offset (alternative-specific constant).
Note the delay between arrival at the workplace and workplace opening time, reflected in no score
accumulation during that period. Agents accumulate those scores over a day, reflected in the bottom
graph.

When one assumes that all other things (particularly travel times) remain fixed and there are no addi-
tional constraints, then agents maximize their score when activity durations are such that all activities
have the same slope (= the same marginal utility; red lines). This follows from basic economic theory
(cf. Section ??), but can also be seen intuitively; if red lines did not all have the same slope, the agent
could gain by extending those activities with steeper slope at the expense of others. Again, clearly this
holds only when all other things, in particular travel times, remain constant, and when there are no
constraints as, e.g., given by opening times.

April 25, 2024 102

Chapter 10. A Closer Look at Scoring 10.2. The Current Charypar-Nagel Utility Function

a
cc

u
m

.
sc

o
re

@home @workplace @lunch

time

workplace opening time

car wlk

sc
o

re

Figure 10.3: Illustration of the scoring function. TOP: Individual contributions of activities and legs.
BOTTOM: Score accumulation over a day.

10.2.6 The “Wrapping Around” of the Utility Function

The MATSim mobsim typically starts at midnight and runs until all plans have reached their final activity.
By itself, the MATSim approach is not limited to a day. However, as already stated in Section 10.2.1, the
standard scoring function assumes that plans “wrap around” to 24-hour days. Thus, the last activity is
merged with the first into one activity. For example, if the first activity ends at 7 am and the last activity
starts at 11 pm, then it is assumed that this is the same activity, with a duration of eight hours.

Note that scoring the two activities separately leads to a different result, because of the nonlinear
(logarithmic) form of the utility of performing. For example, ln(1)+ ln(7) = ln(7) ̸= ln(1+ 7) = ln(8).

10.2.7 MATSim Scoring, Opportunity Cost of Time, and the VTTS

As a result of the wrap-around concept, travel receives, beyond the typically negative direct marginal
utility βtrav,mode, an additional implicit penalty from the marginal utility of time as a resource: If travel
time could be reduced by ∆ttrav , the person would not only gain from avoiding βtrav ·∆ttrav , but also
from additional time for activities (effect of the opportunity cost of time). The (total) marginal utility of
travel time savings is thus1

mUT T S = − ∂
∂ttrav

Strav +
∂

∂tdur
Sdur = −βtrav + βperf ·

ttyp,q
tdur,q

, (10.6)

where βtrav typically is negative, and thus −βtrav is positive.

1The two different signs come from the fact that, say, an decrease in travel times comes along with an increase in activity
duration. This could be written formally, but would complicate notation.

April 25, 2024 103

Chapter 10. A Closer Look at Scoring 10.2. The Current Charypar-Nagel Utility Function

At the typical duration of an activity, this is

mUT T S
∣∣∣
tdur,q=ttyp,q

= −βtrav + βperf ,

where it can be imagined q is the activity immediately following the trip (cf. Section ??). The marginal
utility of travel time savings, mUT T S, can thus be defined as the indirect effect on the overall time
budget, corrected by an offset βtrav that denotes how much better, or worse, it is to spend that time
traveling, rather than “doing nothing”.2 To differentiate βtrav from the indirect effect, it is sometimes
called direct marginal utility of time spent traveling.

For example, βperf could be 6/h, and βtrav,modeA = −1/h. This would mean that the base mUTTS
would be 6/h, but spent at mode A it would go up to 7/h. A mode could also be more agreeable than
the base mode, e.g. having a βtrav,modeB = +1/h. In this case, mUTTS would be 5/h.

The marginal utility of travel time savings can be transformed to the more common Value of Travel Time
Savings (VTTS) by dividing it by the marginal utility of money, βm:

V T T S =
mUT T S

βm
=

−βtrav + βperf · ttyp,q
tdur,q

βm
.

At the typical duration of an activity, this is

V T T S
∣∣∣
tdur,q=ttyp,q

=
mUT T S

βm

∣∣∣
tdur,q=ttyp,q

=
−βtrav + βperf

βm

10.2.8 The Resulting Modeling of Schedule Delay Costs

Arriving Early In the same way as the marginal utility of travel time savings is not only given by −βtrav ,
but instead by −βtrav + βperf · ttyp,q

tdur,q
, the marginal utility of waiting time savings is given by

mUW T S = −βwait + βperf ·
ttyp,q
tdur,q

.

Even if the direct marginal utility of waiting, βwait , equals zero, then “doing nothing” still eats into the
overall time budget and thus incurs the same opportunity cost of time as traveling does. Intuitively,
one can imagine that one must leave the previous activity earlier to have a longer waiting time, thus
reducing the score of the previous activity.

Thus, as long as one cannot estimate βwait separately from βperf , we recommend leaving βwait at zero.

Arriving Late Arriving late incurs a marginal utility of βlate, typically negative. Here, no additional
opportunity cost of time is involved. Intuitively, arriving later implies having left the previous activity
later. That is: the current activity is shortened by the same amount that the previous activity was
extended, (cf. Section ??).

Vickrey Parameters As a result, the Vickrey parameters of α (marginal penalty for arriving early), β
(marginal penalty for traveling) and γ (marginal penalty for arriving late), as defined by Arnott et al.

2This is an approximate statement; in the full theory, the reference marginal utility is not given by “doing nothing”, but
by a Lagrange multiplier related to the constraint that a day has 24 hours; again, cf. Section ??.

April 25, 2024 104

Chapter 10. A Closer Look at Scoring 10.3. Implementation Details

(1990), are consistent with the following equations:

−βwait + βperf · ttyp,q
tdur,q

= α

−βtrav + βperf · ttyp,q
tdur,q

= β
−βlate = γ .

(10.7)

10.3 Implementation Details

This section discusses details of the current implementation of the default MATSim scoring function.
The section can be skipped if the reader understands that what has been summarized up to this point
is not the full story.

10.3.1 Negative Durations

−3h @ home
!! negative duration !!

start @ 06:00 + 1d
... ... a ... very ... long ... schedule

00:00 24:00

@home
start @ 21:00end @ 09:00

... a normal schedule ...@home

12h @ home

@home
end @ 03:00

@home

Figure 10.4: Illustration of wrap-around scoring. TOP: Normal situation. BOTTOM: Situation where the
final activity of the plan starts at a later time of day then when the first activity ended,
resulting in a negative duration of the wrap-around (= overnight) activity..

In MATSim, somewhat oddly, it is possible to have activities with negative durations. This can happen
because of the “wrap-around” mechanism, where the last activity of a plan is stitched together with the
first activity of the plan, and only that merged activity is scored (cf. Section 10.2.6). In this situation, it
can happen that an agent arrives at the last activity of the plan at a later 24-hour-time than when the
first activity ended. For example, an agent could stay at home until 3 am (end of first activity), then go
through her daily plan including a very late party, and return home at 6 am the next morning (Figure 10.4).
In this case, the duration of the wrap-around home activity would be minus three hours. The current
scoring approach for this situation is to take the slope of the expression βperf · ttyp,q · ln(tdur,q/t0,q)
when it crosses zero, and extend this towards minus infinity (Figure 10.5).3

3Originally, a score of zero was assigned to these negative duration activities. However, the adaptive agents quickly found
out that they could use this to their advantage, expanding this negative duration without a penalty would lead to more time
elsewhere, which the agent could use to accumulate score. For an adaptive algorithm, a penalty like this needs to be defined
so that it guides the adaptation back into the feasible region. The penalty must increase with increasing negative duration. It

April 25, 2024 105

Chapter 10. A Closer Look at Scoring 10.3. Implementation Details

s
c
o
re

activity duration

Figure 10.5: Extending the slope when the utility function crosses the zero line to negative durations.

First and Last Activity not the Same Clearly, the wrap-around approach fails if the first and last activity
are not the same. The present code does not look at locations, but gives a warning and problematic
results if they are of different types.

10.3.2 Score Averaging

The score S that is computed according to the rules given in this chapter is not assigned directly to the
plan, rather, it is exponentially smoothed according to

Sk = α S + (1 − α)Sk−1 , (10.8)

where Sk is the newly memorized score, Sk−1 is the previously memorized score, S is the score
obtained from the plan’s execution in the mobsim, and α is a “learning” or “blending” parameter. The
default value of α is one; it can be configured by the line
<param name="learningRate" value="..." />

in the config file.

Non-executed plans just keep their score.

10.3.3 Forcing Scores to Converge

For many situations, both practical and theoretical (see Section ??), it is desirable that each plan’s
score converges to its expectation value. Equation (10.8) will not achieve that; it just dampens the
fluctuations. A well-known approach to force convergence to the expectation value is MSA:

Sm =
1

m S +
m − 1

m Sm−1 . (10.9)

This resembles Equation (10.8), with the important difference that the fixed blending parameter α is
now replaced by a variable 1/m. m is not the iteration number but counts how often a plan was
executed and thus scored. This is necessary in MATSim since a plan is not executed and scored in every
iteration.

This behavior can be switched on by the following config option:
<param name="fractionOfIterationsToStartScoreMSA" value="..." />

also needs to be more strongly negative than any score value for a positive activity duration. The latter is, however, impossible
to achieve with a logarithmic form, which tends to −∞ as tdur,q approaches zero from above.

April 25, 2024 106

Chapter 10. A Closer Look at Scoring 10.4. Typical Scoring Function Parameters and their Calibration

This is plausibly used together with innovation switch off (Section 4.6.3), meaning that MSA operates
on a fixed set of plans.

10.4 Typical Scoring Function Parameters and their Calibration

The current MATSim default values are

βm = 1 utils/monetaryunit
βperf = 6 utils/h
βtrav,mode(q) = −6 utils/h
βwait = 0 utils/h
βshort.dur = 0 utils/h
βlate.ar = −18 utils/h
βearly.dp = 0 utils/h.

(10.10)

They are loosely based on the Vickrey bottleneck model (e.g., Arnott et al., 1990).

However, in many situations, and in particular in situations where mode choice in MATSim is enabled,
it will be necessary to calibrate the scoring function to your local needs. In many of the systems
that we model, traveling by car does not seem to be less convenient than “doing nothing”. Thus, the
direct marginal utility of traveling by car, βtrav,car , is often close to zero and sometimes even positive
(see, e.g., Redmond and Mokhtarian, 2001; Pawlak et al., 2011). Based on this, a possible approach to
calibration is as follows:4

1. Set βm ≡ marginalUtilityOfMoney to whatever is the prefactor of your monetary term in your
mode choice logit model.

If you do not have a mode choice logit model, set to 1. (This is the default.)

This is normally a positive value, since having more money normally increases utility.

2. Set βperf ≡ performing to whatever the prefactor of car travel time is in your mode choice mode,
while changing that parameter’s sign from its typical “−” to a “+”.

If you do not have a mode choice logit model, set to +6. (This is the default.)

This is normally a positive value, since performing an activity for more time normally increases
utility.

3. Set βtrav,car ≡ marginalUtilityOfTraveling... to 0. It is important to understand this: Even if
this value is set to zero, traveling by car will be implicitly punished by the opportunity cost of
time: If you are traveling by car, you cannot perform an activity; thus, you are (marginally and
approximately) losing βperf . See Section 10.2.7.

4. Set all other marginal utilities of travel time by mode relative to the car value.

For example, if your logit model says something like

... − 6/h · ttcar − 7/h · ttpt ...,

then

βperf = 6 , βtrav,car = 0 , and βtrav,pt = −1 .

If you do not have a mode choice logit model, set all βtrav,mode ≡ marginalUtilityOfTraveling...

values to zero (i.e., same as car).

4Different groups have different systems; this one is typical for VSP, using ideas from Michael Balmer.

April 25, 2024 107

Chapter 10. A Closer Look at Scoring 10.5. Helper functions

5. Set distance cost rates monetaryDistanceRate... to plausible values, if you have them.

Note that this needs to be negative: distance consumes money at a certain rate.

6. Use the alternative-specific constants Cmode ≡ constant to calibrate your modal split.

(This is, however, not completely simple; one must run iterations and look at the result; especially
for modes with small shares, one needs to have innovation switched off early enough near the
end of the iterations.)

If you end up having your modal split right, but its distance distribution wrong, you probably need to
look at different mode speeds. In our experience, this works better for this than using the βtrav,mode.

Calibrating schedule-based public transport (see Chapter 12) goes beyond what can be provided here.

10.5 Helper functions

10.5.1 Experienced plans

There is the config option
<module name="scoring" >

<param name="writeExperiencedPlans" value="true" />

...

It will write, in those iterations when regular plans files are written, also files
*experienced_plans.xml.gz and *experienced_plans_scores.txt.gz. The first writes the actu-
ally experienced plans (rather than the “planned” plan); the second writes the individual contributions
of activities and legs to the overall score.5

10.6 Applications and Extensions of the Scoring Function

The default scoring function has been applied and extended for various purposes. Thus, the historical
development is accompanied by various conceptual and technical modifications leading to the current
utility function described above. This also means that the reported parameter settings in the literature
are an indication, not a direct recommendation.

Important applications for large scenarios are described in Chapter ??.

Special utility functions have been developed for car sharing (see Chapter ??), social contacts and joint
trips (see Chapter ??), parking (see Chapter ??), road pricing (see Chapter ??) and destination innovation
(see Chapter 20), also describing facility loading scoring and inclusion of random error terms.

Future topics, available on an experimental basis, are: a full-blown utility function estimation (Sec-
tion ??), inclusion of agent-specific preferences (Section ??) and application of alternative utility function
forms (Section ??).

5It is, unfortunately, not clear if this will write all contributions, or only those from activities and legs. Contributions that
go beyond those from activities and legs are, for example “person money events” and “person score events”.

April 25, 2024 108

Chapter 10. A Closer Look at Scoring 10.7. Appendix: Old Version of the Zero Utility Duration

10.7 Appendix: Old Version of the Zero Utility Duration

When using the deprecated config setting typicalDurationScoreComputation=uniform, t0,q is defined
by the expression t0,q := ttyp,q · exp(−10h/ttyp,q/prioq), where prioq is a configurable parameter.
This allows to re-write the scoring function from Equation (10.3) as

= βperf · ttyp,q · ln(tdur,q/ttyp,q) + βperf · 10h · 1

prioq
.

This is evidently such that all activities with the same value of prioq obtain, at their typical duration,
i.e., when tdur,q = ttyp,q, the same utility value of βperf ·10h/prioq. The idea was that this would make
them equally likely to be dropped in a time shortage situation (Charypar and Nagel, 2005). However,
this does not work as intended, since activities receiving this utility value from an activity with a short
duration have a larger utility accumulation per time unit than others and are thus dropped later. In
consequence, without additional constraints, the “home” activity gets dropped first, which is clearly
not plausible. In consequence, the recommendation is to use the relative setting. If you insist on
using the uniform setting, the recommendations are:

• Do not set the priority value in the config away from its default value.

• Recognize that the current MATSim default scoring/utility function is not suitable for activity
dropping.

With the relative setting instead, these deficiencies should be removed. This was, however, never
investigated systematically. Fig. 10.6 illustrates the uniform setting. Section ?? discusses further alter-
natives.

0 1 2 3 4 5 6 7 8 9 10 11
−20

0
20
40
60
80

S d
ur

,q

βperf = 6/h, ttyp = 8h, prio = 1

change of ttyp to 2h

0 1 2 3 4 5 6 7 8 9 10 11
−20

0
20
40
60
80

S d
ur

,q

(6/h, 8h, 1)
change of prio to 2

0 1 2 3 4 5 6 7 8 9 10 11
−20

0
20
40
60
80

tdur,q

S d
ur

,q

(6/h, 8h, 1)
change of βperf to 3/h

Figure 10.6: Reward for performing an activity when typicalDurationScoreComputation is set to
uniform. TOP: Effect of changing the typical duration. MIDDLE: Effect of changing prio.
BOTTOM: Effect of changing βperf Note how in the top plot the score at the typical duration
just moves to the left, but not down, other than in Fig. 10.1.

April 25, 2024 109

Part V

Analysis

11
CSV outputs

Author: Billy Charlton
#EPSG :31468 (this is a CSV comment)

departureTime ,personId ,vehicleId ,fromLinkId ,from_x ,from_y ,to_x ,to_y ,travelTime

16.0,"link -243466701","drt596","51717" ,4589322.86 ,5821008.32 ,4590199.68 ,5822078.39 ,103.0

33.0,"link -419305801","drt716","136685" ,4592171.06 ,5813214.2 ,4593371.04 ,5811150.86 ,286.0

87.0,"drt -223775601","drt1077","101393" ,4600723.1 ,5823415.31 ,4597578.72 ,5824512.74 ,342.0

...

Many standard MATSim outputs are in the CSV text file format. These output files are described in this
section, along with some best practices for using the CSV format with MATSim .

11.1 MATSim standard CSV outputs

The following default outputs are created by MATSim, either in raw text form or compressed using gzip.
Note the column delimiters used for each file, as they are inconsistent.

output_persons.csv.gz - (semicolon-separated format) Statistics for every person in the simulation. Each
row provides demographic data including age, sex, income, car availability; as well as simulation outputs
such as executed score and initial activity coordinates. Depending on the simulation, other columns
may also be present.

output_legs.csv.gz - (semicolon-separated format) Statistics for every leg in the simulation. Each row
includes the person ID, trip ID, departure/travel/wait times, leg distance, mode, starting and ending
links and coordinates, and transit details for transit legs.

output_trips.csv.gz - (semicolon-separated format) Statistics for every trip in the simulation. Each row
includes the person ID, trip ID and number, departure/travel/wait times, traveled and euclidean distance,
mode information, start and end activity types, starting and ending facilities, starting and ending links
and coordinates, and transit information for transit trips. This file is the primary input for many of the
post-processing functions in the MATSim R library described in section 13.

*modestats.txt, scorestats.txt, stopwatch.txt, traveldistancestats.txt - (tab-separated format) These
small files provide top-level summaries for mode, travel distances, and scores; one row per iteration.

11.2 Recommendations for using CSV in the MATSim context

CSV is a venerable text file format that has been in use for decades to facilitate data storage and
exchange between programs. Due to its long pedigree, CSV enjoys extremely broad support for import

112

Chapter 11. CSV outputs 11.2. Recommendations for using CSV in the MATSim context

and output in just about every data-aware program. At its simplest, it provides a human-readable,
compact data format that is editable anywhere. But it also suffers from some ”gotcha” implementation
details that are described below.

CSV is a row-based text format, with each row including columns of data separated by a delimiter
character, usually but not always a comma. Hence the name, ”comma-separated values”. The only
information about the data in the file is in an optional header row which can provide labels for each
column. There is no data type information, precision settings, or validation as part of the file format.

11.2.1 CSV file format variations: delimiters, header, quotes, and comments

Delimiters. The standard column delimiter of a true CSV file is the comma. However, in many European
countries including Germany, the historical and typical representation of numbers inverts commas and
periods from their international use as thousands and decimal separators. For this reason, some CSV
files in central Europe use the semicolon as the separator instead of the comma. Furthermore the
tab character (ASCII value 9) can be used instead of either comma or semicolon; this is often called
”tab-separated” format or TSV. Tabs can make files a bit easier to read, but some text editors convert
tabs to spaces so caution is required.

These different delimiters only cause problems if the user is unaware of the variations. Most CSV reading
libraries can handle various delimiters and will either auto-sense it properly or it can be specified.

Header line. The first line of a CSV file may be an optional header which provides names of the columns
of data that follow in all subsequent rows. Without a header row there is no way for a user to know
what the file contains; this information must be provided out-of-stream somehow. For this reason, it is
always recommended to use a header row when possible.

Over the years, many conventions have arisen regarding good column names: for example, geographic
point data should include suffixes _x, _y, _lat, or _lon so that they are auto-sensed when imported into
common GIS tools.

Quotes. String columns can be enclosed in ”double quotes” for clarity although this is not required
unless the string contains the delimiter field. If double quotes are used to enclose fields, then a double
quote appearing inside a field must be escaped by preceding it with another double quote. For example:
”aaa”,”b””bb”,”ccc”

Many CSV files do not encode double quotes properly as above – be warned.

Comments. There is no official, standard way to include comments in a CSV file, but many libraries
allow the use of the hash/pound character ’#’ in the first position to signify that the row is to be ignored
by the parser. This is one way to provide information to the data consumer about what is included in
the file.

For example, one could include the line ’#EPSG:31468’ as the first line of a CSV file to signify the
coordinate reference system of point data that follows.

Not all CSV parsing libraries support this and it is nonstandard but common – so be warned.

11.2.2 Guidance on creating MATSim-standard CSV files

Given all of these variations, the core team of MATSim developers has some guidance on how to create
well-formed, usable CSV files for successful data interchange:

• Delimiter: Use a comma or tab. Avoid using semicolon as the column delimiter.

• Header: Always include a header line that labels your data columns.

April 25, 2024 113

Chapter 11. CSV outputs 11.2. Recommendations for using CSV in the MATSim context

• Column names: Avoid spaces in names unless the column names will be directly used in visual
outputs as labels. Always use suffixes _x and _y, or _lat and _lon, for coordinate data so that the
data can be imported to other tools easily.

• Comments: Include a header ’#EPSG:12345’ signifying the coordinate reference system of any
geographic point data, if that data is not in longitude/latitude format. Note this is not standard
CSV, and may cause interoperability issues.

With these tips, using CSV with MATSim can be a consistent and pleasant experience.

April 25, 2024 114

12
Python bindings

Author: Billy Charlton
import matsim
import pandas as pd
from collections import defaultdict
%matplotlib inline

1. NETWORK: Read a MATSim network:
net = matsim.read_network('output_network.xml.gz ')
net.nodes
Dataframe output:
x y node_id
0 -20000.0 0.0 1
1 -15000.0 0.0 2
2 -865.0 5925.0 3
...
net.links
Dataframe output:
length capacity freespeed ... link_id from_node to_node
0 10000.0 36000.0 27.78 ... 1 1 2
1 10000.0 3600.0 27.78 ... 2 2 3
2 10000.0 3600.0 27.78 ... 3 2 4
...

12.1 Basic Information

Entry point to documentation:
MATSim Python binding documentation is on the PyPi package library website at https://pypi.org/

project/matsim-tools/.

Invoking the module:
Install using ”pip install matsim-tools”. Then ”import matsim” from your Python code to access the
API.

Selected publications:
–

115

https://pypi.org/project/matsim-tools/
https://pypi.org/project/matsim-tools/

Chapter 12. Python bindings 12.2. Introduction

12.2 Introduction

The beginnings of a Python API for accessing MATSim output files is now available. The feature set is
still under development, so expect the API to change and features to be added in time.

The main goals of the Python API:

• Read MATSim outputs into Python in a way that works well with the pandas and geopandas
libraries, for data analysis workflows.

• Initially support reading network, event, and plans files

• Support XML, JavaScript Object Notation (JSON), and Protobuf event file formats

• Initial support for writing MATSim files

12.3 Installation

Python 3.6 and above are supported.

Packages and install files are available on PyPi at https://pypi.org/project/matsim-tools/ and also
on Condaforge at https://conda-forge.org/.

Install from PyPi using ”pip install matsim-tools”. Alternatively the source code can be installed from
https://github.com/matsim-vsp/matsim-python-tools if you do not wish to use a package manager.

12.4 Using the MATSim Python API

MATSim Python API is designed to either use the pandas data library directly, or work well with it.

The full API is still under development and is not duplicated here. See the PyPi documentation site
linked above for API documentation and sample code. Some examples are reprinted here.

Read a network. This code loads a network file in as two pandas dataframes, one for nodes and one
for links.
import matsim

net = matsim.read_network('output_network.xml.gz ')

net.nodes
Dataframe output:
x y node_id
0 -20000.0 0.0 1
1 -15000.0 0.0 2
2 -865.0 5925.0 3
...

net.links
Dataframe output:
length capacity freespeed ... link_id from_node to_node
0 10000.0 36000.0 27.78 ... 1 1 2
1 10000.0 3600.0 27.78 ... 2 2 3
2 10000.0 3600.0 27.78 ... 3 2 4
...

Event processing. MATSim event files do not convert easily to Pandas dataframes, because every event
type has a different set of properties, while dataframes expect a well-defined set of columns. Depending
on your use case, your options are to either (1) filter specific event types into separate dataframes (one
for each type), or (2) collect the data you need into python dictionaries and/or lists which can be
converted to dataframes at the end (or analyzed using regular Python).

April 25, 2024 116

https://pypi.org/project/matsim-tools/
https://conda-forge.org/
https://github.com/matsim-vsp/matsim-python-tools

Chapter 12. Python bindings 12.4. Using the MATSim Python API

Be warned that the event ORDER in MATSim event files is important, so separating event types into
separate dataframes is often a bad idea. Option (2) above is a bit more work but very likely what you
need to do.

Event example. More examples are available online.
EVENTS: Stream through a MATSim event file.
The event_reader returns a python generator function , which you can then
loop over without loading the entire events file in memory.
#

Example: Sum up all 'entered link ' events to get link volumes.
Supports both .xml.gz and protobuf .pb.gz event file formats!
Only returns events of type 'entered link ' and 'left link ':
import matsim
import pandas as pd
from collections import defaultdict
events = matsim.event_reader('output_events.xml.gz', types='entered link ,left link ')

defaultdict creates a blank dict entry on first reference; similar to {} but friendlier
link_counts = defaultdict(int)

for event in events:
if event['type '] == 'entered link ':

link_counts[event['link ']] += 1

convert our link_counts dict to a pandas dataframe ,
with 'link_id ' column as the index and 'count ' column with value:
link_counts = pd.DataFrame.from_dict(

link_counts , orient='index ', columns=['count ']
). rename_axis('link_id ')

Plan files. Each plan is returned as a tuple with its owning person (for now).

Some hints on working with plan files:

• Use ”selectedPlansOnly = True” to only return selected plans

• Always emits person, even if that person has no plans

• Every element can be iterated on to get its children (e.g. the plan’s activities and legs)

• The name of the element is in its .tag (e.g. ’plan’, ’leg’, ’route’, ’attributes’)

• An element’s attributes are accessed using .attrib[’attrib-name’]

• Use the element’s .text field to get data outside of attributes (e.g. a route’s list of links)

An example of reading a plan file:
plans = matsim.plan_reader('output_plans.xml.gz ', selectedPlansOnly = True)

Each plan is returned as a tuple with its owning person
- The name of the element is in its .tag (e.g. 'plan ', 'leg ', 'route ', 'attributes ')
- An element 's attributes are accessed using .attrib['attrib -name ']
- Use the element 's .text field to get data outside of attributes
(e.g. a route 's list of links)
- Every element can be iterated on to get its children
- Emits person even if that person has no plans

for person , plan in plans:

do stuff with this plan , e.g.
work_activities = filter(

lambda e: e.tag == 'activity ' and e.attrib['type '] == 'w',
plan)

print('person ', person.attrib['id '], 'selected plan w/',
len(list(work_activities)), 'work -act ')

activities.append(num_activities)

April 25, 2024 117

Chapter 12. Python bindings 12.4. Using the MATSim Python API

person 1 selected plan w/ 2 work -act
person 10 selected plan w/ 1 work -act
person 100 selected plan w/ 1 work -a

Be sure to review the PyPi website https://pypi.org/project/matsim-tools/ for additional documen-
tation as the Python API matures.

April 25, 2024 118

https://pypi.org/project/matsim-tools/

13
R bindings

Author: Billy Charlton

The R language and platform is well-suited to data analysis workflows. There is now a MATSim-R support
package under development which should make it easier to work with MATSim files in the R environment.

13.1 Basic Information

Entry point to documentation:
Documentation lives at https://vsp.berlin/matsim-r.

Invoking the module:
To install from Github, in an R session run install.packages(”devtools”) followed by devtools::install_-
github(”matsim-vsp/matsim-r”).
Selected publications:
–

13.2 Introduction

The beginnings of an R API for accessing MATSim output files is now available. The feature set is still
under development, so expect the API to change and features to be added in time.

The main goals of the R API:

• Read MATSim outputs into R in a way that feels natural and works well for data analysis workflows.

• Support reading network, trips, and eventually events and plans files

119

https://vsp.berlin/matsim-r

Chapter 13. R bindings 13.3. Installation

13.3 Installation

This package is not yet available on the CRAN R package repository, as it is still changing rapidly. Until
it is on CRAN, it can be installed directly from the main Github repository using the R ”devtools” library.
only need this if you don 't have devtools already:
install.packages("devtools")

devtools :: install_github("matsim -vsp/matsim -r")

13.4 Using the R API

The best way to get familiar with the R API is to open the online help directly from R-Studio, using the
”??matsim” command and then opening the help index for the matsim package. Each of the API functions
are documented inline and so the docs appear automatically in the R help system. Documentation is
also online at https://vsp.berlin/matsim-r.

Currently, MATSim network files and standard output_trips tables can be read into R as data frames.
Then, a multitude of functions exist for creating plots and SimWrapper dashboards.

Note, the MATSim R library uses the R ”tidyverse” internally; if you do not use the tidyverse, just know
that tibbles and dataframes are interchangeable and have the same internal format.

Some example functions:

• loadNetwork - Loads a MATSim XML network file, creating a nodes tibble and a links tibble. Any
node and link attribute records in the network are stored as additional columns in the respective
node and link tibbles.

• readTripsTable - Loads a MATSim output_trips CSV from file or gzip archive, creating a tibble with
columns as in the CSV file

• transformToSf - Transforms trips table from tibble to an ”SF” table with attribute features and
geometry feature, for use with the SF geometry library

• prepareSimwrapperDashboardFromFolder - Creates inputs files for a SimWrapper interactive dash-
board for the given output folder, based on the output_trips table. After creating the files, use
the SimWrapper website to view the dashboard

• plotMapWithTrips, plotModalShiftBar, plot... - Many plot... functions take the trip table as input
and produce a specific plot of the data

The API continues to evolve so it is important to check the installed documentation to see what features
are available.

April 25, 2024 120

https://vsp.berlin/matsim-r

14
The “Analysis” Contribution

Author: Kai Nagel

14.1 Basic Information

Entry point to documentation:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → analysis

Invoking the module:
No standard invokation. See the https://github.com/matsim-org/matsim-libs/tree/master/contribs

→ analysis RunKNEventsAnalyzer class for intuition.

Selected publications:
–

14.2 Summary

This contribution collects various analysis tools for MATSim output.

One important reason for having this in a contribution rather than in a playground is the Maven layout of
the repository: Contributions can use material from other contributions, but not from the playgrounds.
In consequence, analysis tools that are needed in a contribution need to be in a contribution themselves.
The analysis contribution is a possible place where to put them.

121

https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-libs/tree/master/contribs

15
Emissions

Author: Benjamin Kickhöfer

calculateColdEmissions
AndThrowEvent()

checkVehicleInfoAnd
CalculateWarmEmissions()
throwWarmEmissionEvent()

personId
linkId
parkingDuration
startEngineTime
accumulatedDistance
vehicleInformation

personId
roadType
linkLength
freeVelocity
travelTime
vehicleInformation

EmissionModule
createLookupTables()
createEmissionHandler()

WarmEmissionHandler ColdEmissionHandler
roadTypeMapping
emissionVehicles
avgHbefaWarmTable
avgHbefaColdTable
detailedHbefaWarmTable
detailedHbefaColdTable

Lookup Tables

WarmEmissionAnalysisModule ColdEmissionAnalysisModule

WarmEmissionEvent ColdEmissionEvent

processEvent()
EventsManager

15.1 Basic Information

Entry point to documentation:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → emissions

Invoking the module:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → emissions →
RunEmissionToolOnlineExample class, RunEmissionToolOfflineExample class

Selected publications:
Hülsmann et al. (2011); Kickhöfer et al. (2013); Kickhöfer and Nagel (2011, 2016); Hülsmann et al. (2013);
Kickhöfer (2014); Kickhöfer and Kern (2015)

15.2 Introduction

This chapter presents the emission modeling tool developed and tested by Hülsmann et al. (2011) and
further improved by Kickhöfer et al. (2013). The text in this chapter is a slightly updated version of the
emission modeling tool description in Kickhöfer (2014). The tool calculates warm and cold-start exhaust
emissions for private cars and freight vehicles by linking MATSim simulation output to the detailed
“Handbook on Emission Factors for Road Transport (HBEFA)” database, available for many European
countries.

123

https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-libs/tree/master/contribs

Chapter 15. Emissions 15.3. Integrated Approaches for Modeling Transport and Emissions

The chapter is structured as follows: Section 15.3 reviews literature for other attempts to model
transport-related emissions. Section 15.4 presents an overview of the “Emission Modeling Tool, see
Chapter 15 (EMT)” and Section 15.5 shows how the tool is embedded in MATSim’s software structure.

15.3 Integrated Approaches for Modeling Transport and Emissions

Over the last two decades, the modeling of transport-related environmental externalities has received
increasing attention in transportation science. The following paragraphs briefly present some recent
work in the exhaust emission modeling area; additionally, they highlight differences to the EMT, which
will then be described in subsequent sections.

Creutzig and He (2009) and Michiels et al. (2012) use very aggregated figures to estimate air pollution
in Beijing and Belgium, respectively. Neither approach mentions any particular underlying transport
model. It seems that transport related emissions are based on aggregated origin-destination matrices
or aggregated demand functions. These two studies are on a very different level of aggregation than
the EMT, and a comparison does not seem constructive.

Beckx et al. (2009) use a sophisticated activity-based model to simulate activity schedules for roughly
30% of all households in the Netherlands. Traffic assignment for passenger cars is performed by using
an aggregated “all-or-nothing” assignment approach, resulting in hourly aggregated traffic flows on the
network. Based on the average speed for a trip, the MIMOSA model then calculates emission and fuel
consumption rates, possibly dependent on vehicle category. The idea of using an activity-based model
to simulate time-dependent emissions is similar to the EMT. In contrast to the latter, the underlying
transport in Beckx et al. (2009) does not account for congestion effects and different traffic states.
Additionally, similar macroscopic emission models are typically unable to capture certain microscopic
behavior accurately (see, e.g., Ahn and Rakha, 2008).

Hirschmann et al. (2010) link the microscopic traffic flow simulator VISSIM with the instantaneous emis-
sion model PHEM.1 At first glance, this approach seems very promising, as it also builds the basis for the
HBEFA database. In contrast to the EMT, it is not suitable for large-scale scenarios due to the computa-
tional complexity of VISSIM. In Kraschl-Hirschmann et al. (2011), the same authors attempt to develop a
parametrization of fuel consumption based on average speeds of vehicles. Such parametrization could
be helpful—in the future—to replace time-consuming lookups in large databases (e.g., HBEFA). However,
the model would need to allow for more input variables (e.g., vehicle category, traffic state, etc.) and
provide more differentiated outputs, e.g., different emission types.

In a similar study, Song et al. (2012) couple VISSIM with the emission modeling tool MOVES. They find that
the VISSIM-simulated, vehicle-specific power distribution for passenger cars deviates significantly from
the observed distribution, meaning that the estimated emissions also contain significant errors. Here
again, the proposed model cannot be used for large-scale scenarios. Additionally, it seems questionable
whether such detailed modeling will prove to be superior to less detailed models as the EMT.

Wismans et al. (2013) compare passenger car emission estimates of static and dynamic traffic assign-
ment models. They claim that little research has been done in connecting macroscopic or meso-scopic
dynamic traffic assignment models with emission models. According to the authors, static assignment
models predict congestion on the wrong locations and ignore spillback effects. They argue that emission
hotspots are, in consequence, also predicted at the wrong locations and/or with the wrong amplitude.
To counter these disadvantages, they couple a static and a dynamic traffic assignment model with the
exhaust emission model ARTEMIS. Large differences in air pollutant emissions are found and hotspot
locations differ.

Hatzopoulou and Miller (2010) develop a methodology for calculating exhaust emissions, using MATSim
as transport model. The approach is therefore similar to the EMT. In contrast to that study, the EMT does

1 The PHEM model uses speed trajectories as input and was tested against the output of the EMT by Hülsmann et al.
(2011).

April 25, 2024 124

Chapter 15. Emissions 15.4. Emission Calculation

not assume fixed exhaust emissions per time unit. It uses a more detailed calculation of emissions based
on the two different traffic states: “free flow” and “stop&go”. It is, thus, able to capture congestion
effects that emerge, as well as the time spent in traffic jam. Furthermore, the EMT calculates exhaust
emissions for passenger cars and for trucks. Finally, since the methodology is based on HBEFA, it can
be transferred to any scenario in Europe.

15.4 Emission Calculation

Air pollution is caused by different contributions of road traffic: Warm emissions are emitted while
driving and are independent of the engine’s temperature. Cold-start emissions also occur during the
warm-up phase and depend on the engine’s temperature when the vehicle is started. Warm emissions
differ with respect to: driving speed, acceleration/deceleration, stop duration, road gradient, and vehicle
characteristics consisting of vehicle type, fuel type, cubic capacity, and European Emission Standard
Class (André and Rapone, 2009). Cold emissions differ with respect to: driving speed, distance traveled,
parking time, ambient temperature, and vehicle characteristics (Weilenmann et al., 2009).

Currently, the emissions contribution to MATSim considers all differentiations above marked in italic.
Road gradient and ambient temperature are not considered; gradient is always assumed to be 0%, and
ambient temperatures are assumed to be HBEFA average. In addition to warm and cold-start emissions,
evaporation and air conditioning emissions also result from road traffic. At the moment, these are not
considered in the emission modeling tool, because they contribute little to the overall emission level.

The calculation of warm emissions is composed of two steps:

1. deriving kinematic characteristics from the simulation, and

2. combining this information with vehicle characteristics to extract emission factors from the HBEFA
database.

In the first step, driving speed, as well as stop duration (and possibly an approximation of accelera-
tion/deceleration patterns), is captured by a mapping of MATSim’s dynamic traffic flows to HBEFA traffic
states. These traffic states, namely “free flow”, “heavy”, “saturated”, and “stop&go”, have been de-
rived from typical driving cycles, i.e., time-velocity profiles. A parametrization of these profiles led to
the definition of these traffic states, which depend on speed limit, average speed, and road type. Thus,
typical emission factors for a specific traffic state on a specific road segment can be looked up in the
HBEFA database. In MATSim, neither the location on a road segment, nor the exact driving behavior of an
agent is known (see Section 1.3). It is quite straightforward to extract agents’ travel times on the road
segment which, thanks to the queuing model, also includes interactions with other agents and spillback
effects. The average speed of an agent on a certain road segment is thus used to identify corresponding
HBEFA traffic states, and to assign emission factors to the vehicle. As of now, the emission modeling
tool considers only two traffic states: free flow and stop&go.2 Each road segment is divided into two
parts representing these two traffic states. The distance ls that a car is driving in stop&go traffic state
is determined by the following equation:

ls =
l vs(vf − v)
v(vf − vs)

, (15.1)

where l is the link length in kilometers from the network, vs is the stop&go speed in km/h for the HBEFA
road type, vf is the free flow speed in km/h from the network, and v = l

t is the average speed on the
link for the vehicle, t being the link travel time of the vehicle in the simulation. For the derivation of
Equation (15.1), please refer to Kickhöfer (2014). The distance that the car is driving in free flow traffic
state is then simply the remaining link length lf = l − ls. The interpretation of this approach: Cars

2 Simplified because the difference between traffic states—free flow, heavy, and saturated—emission factors are only
marginal. In contrast, emission factors for stop&go are roughly twice as high.

April 25, 2024 125

Chapter 15. Emissions 15.5. Software Structure

drive in free flow until they have to wait in a queue. Stop&go traffic state applies only in the queue.
According to the MATSim queue model presented in Section 1.3 , a queue emerges if demand exceeds
capacity of a road segment, which can also result in spill-back effects on upstream road segments. The
length of the queue is, thus, approximated by Equation 15.1, where the average speed v on a link is
the only exogenous variable.

For the second step, agent-specific vehicle attributes are needed. They are usually obtained from survey
data during the initial population synthesis. The vehicle attributes typically comprise: vehicle type, age,
cubic capacity and fuel type. Because MATSim keeps socio-demographic information throughout the
simulation process, it can be used at any time for reference in the detailed HBEFA database. Additionally,
the emission modeling tool is designed in such way that fleet averages are used, whenever no detailed
vehicle information is available.

The calculation of cold-start emissions is, again, composed of two steps:

1. deriving parking duration and accumulated distance from the simulation, and

2. combining this information with vehicle characteristics in order to extract emission factors from
the HBEFA database.3

Parking duration refers to the time a vehicle is not moved before cold-start emissions are produced. It
is calculated by subtracting an activity’s start time from the same activity’s end time and by checking
if the trip to and from the activity is performed by car. Emission factors in HBEFA are differentiated
by parking duration in one hour time steps from 1 hour to 12 hours. After 12 hours, the vehicle is
assumed to have fully cooled down. The accumulated distance refers to the distance a vehicle travels
after a cold start. According to HBEFA, there are different cold-start emissions for short trips less than
1 kilometer and and for longer trips equal to or greater than 1 kilometer. In reality, cold-start emissions
are emitted along the route after a cold start; at this time, the emission modeling tool maps the short
trip emissions to the road segment where the engine is started, and, if applicable, additional emissions
to the road segment where the accumulated distance exceeds the first kilometer. Overall, cold-start
emission factors increase with parking duration and accumulated distance; they also depend on vehicle
attributes. The lookup for this information is identical to the one described for warm emissions.

In order to further process warm and cold-start emissions, so-called emission events are generated
during the simulation in a separate events stream. The definition of emission events follows the MATSim
framework that uses events for storing disaggregated information in XML format. The following section
provides more information on the EMT’s software structure.

15.5 Software Structure

The information in this section refers to code that can be found in the MATSim repository. In the
following, the software structure of the EMT at revision 30 058 is described. For information on how to
use the tool, please use the entry points listed at the beginning of this Chapter 15.

Figure 15.1 shows the simplified software structure of the EMT. The core of the tool is the EmissionModule

which needs to be created before the simulation starts. There are also two public methods that must
be called: createLookupTables() and createEmissionHandler().

The former creates lookup tables from input data that has to be exported from the HBEFA database. The
path to these input files can be configured in the EmissionsConfigGroup. Mandatory input are files for
the creation of roadTypeMapping, emissionVehicles, avgHbefaWarmTable, and avgHbefaColdTable. The
first lookup table maps road types from the MATSim network to HBEFA road types. For this map-
ping, it is necessary to classify the network road types into HBEFA categories; this requires some
transport engineering knowledge. The second lookup table defines the vehicle attributes of every

3 Please note that HBEFA provides cold-start emission factors only for passenger cars. Freight traffic therefore only
produces cold-start emissions of passenger cars.

April 25, 2024 126

Chapter 15. Emissions 15.5. Software Structure

calculateColdEmissions
AndThrowEvent()

checkVehicleInfoAnd
CalculateWarmEmissions()
throwWarmEmissionEvent()

personId
linkId
parkingDuration
startEngineTime
accumulatedDistance
vehicleInformation

personId
roadType
linkLength
freeVelocity
travelTime
vehicleInformation

EmissionModule
createLookupTables()
createEmissionHandler()

WarmEmissionHandler ColdEmissionHandler
roadTypeMapping
emissionVehicles
avgHbefaWarmTable
avgHbefaColdTable
detailedHbefaWarmTable
detailedHbefaColdTable

Lookup Tables

WarmEmissionAnalysisModule ColdEmissionAnalysisModule

WarmEmissionEvent ColdEmissionEvent

processEvent()
EventsManager

Figure 15.1: Software structure of the emission modeling tool.

owner in the population. It should therefore be generated during the population synthesis process.
If no detailed information is available, the vehicle lookup table still needs to specify whether the ve-
hicle is a car or a truck. The current implementation uses the MATSim vehicle interface Vehicles

as container for storing the relevant data in VehicleType.4 The last two mandatory lookup tables
(avgHbefaWarmTable and avgHbefaColdTable) provide warm and cold emission factors in g/km, re-
spectively. The data is stored using a unique key. For the construction of this key, information from
roadTypeMapping and emissionVehicles is needed, as well as information derived from the simula-
tion as described in Section 15.4. The latter information is depicted in Figure 15.1 as variables of the
two classes WarmEmissionHandler and ColdEmissionHandler. These two handlers implement several
MATSim EventHandler interfaces to extract necessary information from the simulation. After gathering
this information, the WarmEmissionHandler asks its WarmEmissionAnalysisModule to reconstruct the key
and look up the emission factors in the respective table. Similarly, the ColdEmissionHandler asks the
ColdEmissionAnalysisModule. These analysis modules then create Warm/ColdEmissionEvents, which
follow the MATSim Event interface definition. Finally, the resulting events stream is written in a joint
emission events file by a separate EventsManager.

For the calculation of emissions dependent on agent-specific vehicle characteristics, emissionVehicles
must contain that specific information, the corresponding flag in the EmissionsConfigGroup needs
to be switched on, and detailed emission factor tables also need to be exported from HBEFA
and provided to the EmissionModule with two additional input files: detailedHbefaWarmTable and
detailedHbefaColdTable.

4 Please note that vehicle information provided to the EmissionModule is only used for storing data on individual vehicle
characteristics and other information will be omitted by the simulation.

April 25, 2024 127

16
Noise

Author (of documentation): Kai Nagel

16.1 Basic Information

Entry point to documentation:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → noise

Invoking the module:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → noise →
NoiseOfflineCalculationExample class

Selected publications:
Kaddoura et al. (2017)

129

https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-libs/tree/master/contribs

17
Accidents

Author (of this documentation): Kai Nagel

17.1 Basic Information

Entry point to documentation:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → accidents

Invoking the module:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → accidents → RunAccidents

class

Selected publications:
Mayobre (2018)

131

https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-libs/tree/master/contribs

Part VI

Extending MATSim

18
Dynamic Transport Services

Author: Michal Maciejewski

Entry point to documentation:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → dvrp

Invoking the module:
No predefined invocation. Starting point(s) under https://github.com/matsim-org/matsim-libs/tree/
master/contribs → dvrp → RunOneTaxiExample class.

Selected publications:
Maciejewski and Nagel (2013a,b, 2014); Maciejewski (2014)

18.1 Introduction

The recent technological advancements in Information and Communications Technology (ICT) provide
novel, on-line fleet management tools, opening up a broad range of possibilities for more intelligent
transport services: flexible, demand-responsive, safe and energy/cost efficient. Significant enhance-

135

https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-libs/tree/master/contribs

Chapter 18. Dynamic Transport Services 18.2. DVRP Contribution

ments can aid in both traditional transport operations, like regular public transport or taxis and intro-
duction of novel solutions, such as demand-responsive transport or personal rapid transport. However,
the growing complexity of modern transport systems, despite all benefits, increases the risk of poor
performance, or even failure, due to lack of precise design, implementation and testing.

One solution is to use simulation tools offering a wide spectrum of possibilities for validating transport
service models. Such tools have to model, in detail, not only the dynamically changing demand and
supply of the relevant service, but also traffic flow and other existing transport services, including
mutual interactions/relations between all these components. Although several approaches have been
proposed (e.g., Regan et al., 1998; Barcelo et al., 2007; Liao et al., 2008; Certicky et al., 2014), as far
the author knows, no existing solutions provide large-scale microscopic simulation that include all the
components above.

18.2 DVRP Contribution

To address the problem above, MATSim’s Dynamic Vehicle Routing Problem (DVRP) contribution has been
developed. The contribution is designed to be highly general and customizable to model and simulate
a wide range of dynamic vehicle routing and scheduling processes. Currently, the domain model is
capable of representing a wide range of one-to-many and many-to-many Vehicle Routing Problems
(VRPs); one can easily extend the model even further to cover other specific cases (see Section 18.3).
Since online optimization is the central focus, the DVRP contribution architecture allows plugging in
of various algorithms. At present, there are several different algorithms available, among them an
algorithm for the Dynamic Multi-Depot Vehicle Routing Problem with Time Windows and Time-Dependent
Travel Times and Costs, analyzed in (Maciejewski and Nagel, 2012), and a family of algorithms for online
taxi dispatching, studied in (Maciejewski and Nagel, 2013a,b, 2014; Maciejewski, 2014).

The DVRP contribution models both supply and demand, as well as optimizing fleet operations, whereas
MATSim’s core is used for simulating supply and demand, both embedded into a large-scale microscopic
transport simulation. In particular, the contribution is responsible for:

• modeling the DVRP domain,

• listening to simulation events,

• monitoring the simulation state (e.g., movement of vehicles),

• finding least-cost paths,

• computing schedules for drivers/vehicles,

• binding drivers’ behavior to their schedules, and

• coordinating interaction/cooperation between drivers, passengers and dispatchers.

Dynamic transport services are simulated in MATSim as one component of the overall transport system.
The optimizer plugged into the DVRP contribution reacts to selected events generated during simulation,
which could be: request submissions, vehicle departures or arrivals, etc. Additionally, it can monitor
the movement of individual vehicles, as well as query other sources of online information, e.g., current
traffic conditions. In response to changes in the system, the optimizer may update drivers’ schedules,
either by applying smaller modifications or re-optimizing them from scratch. Drivers are notified about
changes in their schedules and adjust to them as soon as possible, including immediate diversion
from their current destinations. For passenger transport, such as taxi or demand-responsive transport
services, interactions between drivers, passengers and the dispatcher are simulated in detail, including
calling a ride or picking up and dropping off passengers.

April 25, 2024 136

Chapter 18. Dynamic Transport Services 18.3. DVRP Model

18.3 DVRP Model

The DVRP contribution can be used for simulating Rich VRPs. Compared to the classic Capacitated VRP,
the major model enhancements are:

• one-to-many (many-to-one) and many-to-many topologies,

• multiple depots,

• dynamic requests,

• request and vehicle types,

• time windows for requests and vehicles,

• time-dependent stochastic travel times and costs, and

• network-based routing (including route planning, vehicle monitoring and diversion).

Except for the travel times and costs (discussed in Section 18.3.2), which are calculated on demand,
all the VRP-related data are accessible via VrpData.1 In the most basic setup, there are only two types
of entities, namely Vehicles and Requests. This model, however, can be easily extended as required.
For instance, for an electric vehicle fleet, specialized ElectricVrpData also stores information about
Chargers. This, and other examples of extending the base VRP model, such as a model of the VRP with
Pickup and Delivery, are available in the org.matsim.contrib.dvrp.extensions package.

18.3.1 Schedule

Each Vehicle has a Schedule, a sequence of different Tasks, such as driving from one location to another
(DriveTask), or staying at a given location (e.g., serving a customer or waiting; StayTask).2 A Schedule is
where supply and demand are coupled. All schedules are calculated by an online optimization algorithm
(see Section 18.6) representing the fleet’s dispatcher. Each task is in one of the following states (defined
in the Task.TaskStatus enum): PLANNED, STARTED or PERFORMED; each schedule’s status is one of the
following:

• UNPLANNED—no tasks assigned

• PLANNED—all tasks are PLANNED (none of them started)

• STARTED—one of the tasks is STARTED (this is the schedule’s currentTask; the preceding tasks are
PERFORMED and the succeeding ones are PLANNED)

• COMPLETED—all tasks are PERFORMED

In general, when modifying a Schedule, one can freely change and rearrange the planned tasks; those
performed are considered to be read-only. For the current task, one can, for instance, change its end
time, although the start time must remain unchanged. Proceeding from the current task to the next
one is carried out by invoking the Schedule.nextTask()) method.

The execution of the current task may be monitored with a TaskTracker.3 In the most basic version,
trackers predict only the end time of the current task. More complex trackers also provide detailed
information on the current state of task execution. OnlineDriveTaskTracker, for example, offers func-
tionality similar to GPS navigation, such as monitoring the movement of a vehicle, predicting its arrival
time and even diverting its path.

1 Package org.matsim.contrib.dvrp.data.
2 Package org.matsim.contrib.dvrp.schedule.
3 Package org.matsim.contrib.dvrp.tracker.

April 25, 2024 137

Chapter 18. Dynamic Transport Services 18.4. DynAgent

ScheduleImpl, along with DriveTaskImpl and StayTaskImpl, is the default implementation of Schedule
and offers several additional features, such as data validation or automated task handling. It also serves
as the starting point when implementing domain-specific schedules or tasks (e.g., ChargeTask in the
electric VRP model mentioned above).

18.3.2 Least-Cost Paths

MATSim’s network model consists of nodes connected by one-way links. Because of the queue-based
traffic flow simulation (Section 1.3), a link is the smallest traversable element (i.e., a vehicle cannot
stop in the middle of a link). Besides links, the DVRP contribution also operates on a higher level of
abstraction: paths. Each path is a sequence of links to be traversed to get from one location to another
in the network, or more precisely, from the end of one link end to the end of another link.

The functionality of finding least-cost paths is available in the org.matsim.contrib.dvrp.router pack-
age. VrpPathCalculator calculates VrpPaths by means of the least-cost path search algorithms available
in MATSim’s core (Jacob et al., 1999; Lefebvre and Balmer, 2007).4 Because of changing traffic conditions,
paths are calculated for a given departure time. Since MATSim calculates average link travel time statis-
tics for every 15minutes time period by default, the 15minutes time bin is also used for computing
shortest paths.

VrpPaths are used by DriveTasks to specify the link sequence to be traversed by a vehicle between
two locations. It is possible to divert a vehicle from its destination by replacing the currently followed
VrpPath with a DivertedVrpPath.

To reduce computational burden, the already calculated paths can be cached for future reuse (see
VrpPathCalculatorWithCache). However, when calculating least-cost paths from one location to many
potential destinations, a significant speed-up can be achieved by means of least-cost tree search (see
org.matsim.utils.LeastCostPathTree).

18.4 DynAgent

Contrary to the standard day-to-day learning in MATSim (but see also Section ??), in the DVRP contri-
bution, each driver behaves dynamically and follows orders coming continuously from the dispatcher.
The DynAgent class, along with the org.matsim.contrib.dynagent package, provides the foundation for
simulating dynamically behaving agents. Although created for DVRP contribution needs, DynAgent is not
limited to this context and can be used in a wide range of different simulation scenarios where agent
dynamism is required.

DynAgent’s main concept assumes an agent can actively decide what to do at each simulation step
instead of using a pre-computed (and occasionally re-computed; see ??) plan. It is up to the agent
whether decisions are made spontaneously or (re-)planned in advance. In some applications, a DynAgent

may represent a fully autonomous agent acting according to his/her desires, beliefs and intentions,
whereas in other cases, it may be a non-autonomous agent following orders systematically issued from
the outside (e.g., a driver receiving tasks from a centralized vehicle dispatching system).

18.4.1 Main Interfaces and Classes

The DynAgent class is a dynamic implementation of MobsimDriverPassengerAgent. Instead of execut-
ing pre-planned Activitys and Legs, a DynAgent performs DynActivitys and DynLegs. The following
assumptions underlie the agent’s behavior:

4 Package org.matsim.core.router.

April 25, 2024 138

Chapter 18. Dynamic Transport Services 18.4. DynAgent

• The DynAgent is the physical representation of the agent, responsible for the interaction with the
real world (i.e., traffic simulation).

• The agent’s high-level behavior is controlled by a DynAgentLogic that can be seen as the agent’s
brain; the DynAgentLogic is responsible for deciding on the agent’s next action (leg or activity),
once the current one has ended.

• Dynamic legs and activities fully define the agent’s low-level behavior, down to the level of a
single simulation step.

At the higher level, the DynAgent dynamism results from the fact that dynamic activities and legs are
usually created on the fly by the agent’s DynAgentLogic; thus, the agent does not have to plan future
actions in advance. When the agent has a roughly detailed legs and activities plan, he/she does not
have to adhere to it and may modify his/her plan at any time (e.g., change the mode or destination of
a future leg, or include or omit a future activity).

Low-level dynamism is provided by the execution of dynamic activities and legs. As for the currently
executed activity, the agent can shorten or lengthen its duration at any time. Additionally, at each time
step, the agent may decide what to do right now (e.g., communicate with other agents, re-plan the
next activity or leg, and so on). When driving a car (DriverDynLeg), the agent can change the route,
destination or even decide about picking up or dropping off somebody on the way. When using public
transport (PTPassengerDynLeg), the agent chooses which bus to get on and at which stop to exit.

Incidentally, the behavior of MATSim’s default plan-based agent, PersonDriverAgentImpl, can be simu-
lated by DynAgent, combined with the PlanToDynAgentLogicAdapter logic. This adapter class creates a
series of dynamic activities and legs that mimics a given Plan of static Activity and Leg instances.

18.4.2 Configuring and Running a Dynamic Simulation

DynAgent has been written for and validated against QSim. Dynamic leg simulation requires no additional
code. However, to take advantage of dynamic activities, DynActivityEngine should be used, instead
of ActivityEngine. The doSimStep(double time) method of DynActivityEngine ensures that dynamic
activities are actively executed by agents and that their end times can be changed.

The easiest way to run a single iteration of QSim is as follows:

1. Create and initialize a Scenario,

2. call DynAgentLauncherUtils’ initQSim(Scenario scenario) method to create and initialize a QSim;
this includes creating a series of objects, such as an EventsManager, DynActivityEngine, or
TeleportationEngine,

3. add AgentSources of DynAgents and other agents to the QSim,

4. run the QSim simulation, and

5. finalize processing events by the EventsManager.

Depending on needs, the procedure above can be extended with additional steps, such as adding
non-default engines or departure handlers to the QSim.

18.4.3 RandomDynAgent Example

The org.matsim.contrib.dynagent.examples.random package contains a basic illustration of how to
create and run a scenario with DynAgents. To highlight differences with plan-based agents, in this
example 100 dynamic agents travel randomly (RandomDynLeg) and perform random duration activities
(RandomDynActivity).

April 25, 2024 139

Chapter 18. Dynamic Transport Services 18.5. Agents in DVRP

High-level random behavior is controlled by RandomDynAgentLogic, that operates according to the fol-
lowing rules:

1. Each agent starts with a RandomDynActivity; see the computeInitialActivity(DynAgent agent)

method.

2. Whenever the currently performed activity or leg ends, a random choice on what to do next
is made between the following options: (a) stop being simulated by starting a determinis-
tic StaticDynActivity with infinite end time, (b) start a RandomDynActivity, or (c) start a
RandomDynLeg; see the computeNextAction(DynAction oldAction, double now) method.

The lower level stochasticity results from random decisions being made at each consecutive deci-
sion point. In the case of RandomDynLeg, each time an agent enters a new link, he or she de-
cides whether to stop at this link or to continue driving; in the latter case, the subsequent link
is chosen randomly; see the RandomDynLeg(Id<Link> fromLinkId, Network network) constructor and
the movedOverNode(Id<Link> newLinkId) method. As for RandomDynActivity, at each time step the
doSimStep(double now) method is called and a random decision is made on the activity end time.

Following the rules specified in Section 18.4.2, setting up and running this example scenario is straight-
forward. RandomDynAgentLauncher reads a network, initializes a QSim, then adds a RandomDynAgnetSource

to the QSim, and finally, launches visualization and starts simulation. The RandomDynAgentSource is re-
sponsible for instantiating 100 DynAgents that are randomly distributed over the network. The simulation
ends when the last active agent becomes inactive.

18.5 Agents in DVRP

Realistic simulation of dynamic transport services requires a proper model of interactions and possible
collaborations between the main actors: drivers, customers (often passengers) and the dispatcher. By
default, drivers and passengers are simulated as agents, while the dispatcher’s decisions are calculated
by the optimization algorithm (see Section 18.6). This, however, is not the only possible configuration.
One may simulate, for example, a decentralized system with a middleman as dispatcher rather than
the fleet’s manager.

18.5.1 Drivers

A driver is modeled as a DynAgent, whose behavior is controlled by a VrpAgentLogic that makes the agent
follow the dynamically changing Schedule.5 As a result, all changes made to the schedule are visible to
and obeyed by the driver. Whenever a new task is started, the driver logic (using a DynActionCreator)
translates it into the corresponding dynamic action. Specifically, a DriveTask is executed as a VrpLeg,
whereas a StayTask is simulated as a VrpActivity. Both VrpLeg and VrpActivity are implemented so
that any change to the referenced task is automatically visible to them. At the same time, any progress
made while carrying them out is instantly reported to the task tracker.

18.5.2 Passengers

To simulate passenger trips microscopically, passengers are modeled as MobsimPassengerAgent in-
stances. As part of the simulation, they can board, ride and, finally, exit vehicles. In contrast to the
drivers, they may be modeled as the standard MATSim agents, each having a fixed daily plan consisting
of legs and activities.

5 Package org.matsim.contrib.dvrp.vrpagent.

April 25, 2024 140

Chapter 18. Dynamic Transport Services 18.6. Optimizer

Interactions between drivers, passengers and the dispatcher, such as submitting PassengerRequests
or picking up and dropping off passengers, are coordinated by a PassengerEngine6. Requests may be
immediate (as soon as possible) or made in advance (at the appointed time). In the former case, a
passenger starts waiting just after placing the order;in the latter case, the dispatched vehicle my arrive
at the pickup location before or after the designated time, which means that either the driver or the
customer, respectively, will wait for the other to come. To ensure proper coordination between these
two agents, the pickup activity performed by the driver must implement the PassengerPickupActivity

interface.

18.6 Optimizer

Since demand and supply are inherently stochastic, the general approach to dealing with dynamic trans-
port services consists of updating vehicles’ schedules in response to observed changes (i.e., events).
This can be done by means of re-optimization procedures that consider all requests (within a given time
horizon) or fast heuristics focused on small updates of the existing solution, rather than constructing
a new one from scratch. Usually, re-optimization procedures give higher quality solutions compared to
ocal update heuristics; however, when it comes to real-world applications, where high (often real-time)
responsiveness is crucial, broad re-optimization may be prohibitively time-consuming.

In the most basic case, an optimizer implements the VrpOptimizer interface7, that is, implements the
following two methods:

• requestSubmitted(Request request)—called on submitting request; in response, the optimizer
either adapts vehicles’ schedules so that request can be served, or rejects it.

• nextTask(Schedule<? extends Task> schedule)—called whenever schedule’s current task has
been completed and the driver switches to the next planned task; this is the last moment to
make or revise the decision on what to do next.

This basic functionality can be freely extended. Besides request submission, one may, for exam-
ple, consider modifying or even canceling already submitted requests. Another option is monitor-
ing vehicles as they travel along designated routes and reacting when they are ahead of/behind
their schedules. Such functionality is available by implementing VrpOptimizerWithOnlineTracking’s
nextLinkEntered(DriveTask driveTask) method, which is called whenever a vehicle moves from the
current link to the next one on its path.

Last but not least, there are two ways of responding to the incoming events. They can be handled either
immediately (synchronously) or between time steps (asynchronously). In the former case, schedules are
re-calculated (updated or re-optimized) directly, in response to the calling of the optimizer’s methods.
This simplifies accepting/rejecting new requests, since the answer is immediately passed back to the
caller. In the latter case, all events observed within a simulation step are recorded and then processed
in batch mode just before the next simulation step begins.8 By doing that, one can not only speed
up computations significantly, but also avoid situations when, due to vehicles’ inertia (e.g., an idle
driver can stop waiting and depart only at the beginning of the simulation step), two or more mutually
conflicting decisions could be made by the optimizer at distinct moments during a single simulation
step, causing the latter to overwrite the former (not always intentional).

6 Package org.matsim.contrib.dvrp.passenger.
7 Package org.matsim.contrib.dvrp.optimizer.
8 This can be achieved by using an optimizer implementing the interface

org.matsim.core.mobsim.framework.listeners.MobsimBeforeSimStepListener.

April 25, 2024 141

Chapter 18. Dynamic Transport Services 18.7. Configuring and Running a DVRP Simulation

18.7 Configuring and Running a DVRP Simulation

Like in within-day replanning (see Chapter ??), dynamic transport services are typically run with the
DVRP contribution as a single-iteration simulation. Setting up and running such a simulation requires
carrying out the following steps:

1. Create a Scenario (MATSim’s domain data) and VrpData (VRP’s domain data),

2. create a VrpOptimizer; this includes instantiation of a least-cost path/tree calculator, e.g.,
VrpPathCalculator, and

3. call DynAgentLauncherUtils’ initQSim(Scenario scenario) method to create and initialize a QSim;
this includes creating a series of objects, such as an EventsManager, DynActivityEngine, or
TeleportationEngine.

4. When simulating passenger services, add a PassengerEngine to the QSim; this includes instantia-
tion of a PassengerRequestCreator that converts calls/orders into PassengerRequests; otherwise
(i.e., non-passenger services), add an appropriate source of requests to the QSim, either as a
MobsimEngine or MobsimListener.

5. Then, add AgentSources to the QSim; for the DynAgent-based drivers, one may use a specialized
VrpAgentSource and provide a DynActionCreator.9

6. run the QSim simulation, and

7. finalize processing events by the EventsManager.

The org.matsim.contrib.dvrp.run package contains VrpLauncherUtils and other utility classes that
simplify certain steps of the above scheme. To facilitate access to the data representing the current
state of the simulated dynamic transport service, MatsimVrpContext provides the Scenario and VrpData

objects and the current time (based on the timer of QSim).

The VrpOptimizer’s performance may be assessed either by analyzing the resulting schedules, or by
processing events collected during the simulation.

18.8 OneTaxi Example

The org.matsim.contrib.dvrp.examples.onetaxi package contains a simple example of how to simulate
on-line taxi dispatching with the DVRP contribution. In this scenario, there are ten taxi customers and
one taxi driver, who serves all requests in the FIFO order. Each customer dials a taxi at a given time to
get from work to home. The example is made up of six classes:

• OneTaxiRequest—represents a taxi request.

• OneTaxiRequestCreator—converts taxi calls into requests prior to submitting them to the opti-
mizer.

• OneTaxiOptimizer—creates and updates the driver’s schedule.

• OneTaxiServeTask—represents StayTasks related to picking up and dropping off customers.

• OneTaxiActionCreator—translates tasks into dynamic activities and legs.

• OneTaxiLauncher—sets up and runs the scenario.

All data necessary to run the OneTaxi example is located in the
/contrib/dvrp/src/main/resources/one_taxi directory.

9 Package org.matsim.contrib.dvrp.vrpagent,

April 25, 2024 142

Chapter 18. Dynamic Transport Services 18.9. Research with DVRP

18.9 Research with DVRP

Currently, the DVRP contribution is used in several research projects. Two of them focus on on-line
dispatching of electric taxis in Berlin and Poznan (Maciejewski and Nagel, 2013a,b, 2014; Maciejewski,
2014). Another project deals with design of demand-responsive transport, where DVRP has been applied
to the case of twin towns, Yarrawonga and Mulwala, described in Chapter ?? (Ronald et al., 2015, 2014).
In a recently launched project, the DVRP contribution will be used for simulation of Demand Responsive
Transport (DRT) services in three cities: Stockholm, Tel Aviv and Leuven.

The current code development focuses on increasing performance and flexibility of the implemented
shortest paths search (see Section 18.3.2). An interesting future research topic, related specifically to
DRT planning, is multi-modal path search, where on-demand vehicles may be combined with fixed-route
buses within a single trip. Another potential research direction is adding a benchmarking functionality
and standardized interfaces so that the DVRP contribution could serve as a testbed for the Rich VRP
optimization algorithms.

April 25, 2024 143

19
The “Minibus” Contribution

Authors: Andreas Neumann, Johan W. Joubert

19.1 Basic Information

Entry point to documentation:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → minibus

Invoking the module:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → minibus → RunMinibus class

Selected publications:
Neumann (2014)

19.2 Paratransit

Paratransit is an informal, market-oriented, self-organizing public transport system. Despite the signifi-
cance of this transport mode, it is mainly unsubsidized, relying on collected fares. Paratransit systems
can be categorized by route pattern and function, by driver organization, type of stops and fare type.
Most case studies covered by the Neumann (2014) thesis indicate that paratransit services are mainly
organized as route associations operating 8-15 seater vans on fixed routes. Most of the services run in
direct competition to a public transport system belonging to a public transit authority. Such a service—
minibuses with fixed routes, but without fixed schedule—is often called a jitney service. The minibus
module of MATSim is based on the most common characteristics, with the understanding that the
jitney/minibus service is only one of many possible paratransit services.

The minibus model is integrated in the multimodal multi-agent simulation of MATSim. In the model,
competing minibus operators begin to explore the public transport market, offering their services. With
more successful operators expanding and less successful operators going bankrupt, a sustainable net-
work of minibus services evolves. In Neumann (2014), the model is verified through multiple illustrative
scenarios, analyzing the model’s sensitivity to different demand patterns, transfers, and interactions of
minibuses and a formal operator’s fixed train line.

The minibus model can be applied to two different transport planning fields. First: in the simulation
of real paratransit targeting the inner workings of different paratransit stakeholders’ relationships, the
model can create “close-to-reality” minibus networks in a South African context. Neumann et al. (2015)
gives an in-depth presentation of the module application and South African paratransit in general. Given

145

https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-libs/tree/master/contribs

Chapter 19. The “Minibus” Contribution 19.3. Network Planning or Solving the Transit Network Design Problem with MATSim

the informal and emergent nature of minibus paratransit in developing countries, routes, schedules
and fares are usually not published; they can only be captured in the tacit knowledge of operators and
frequent users. Applying the minibus model has proven valuable in gaining a better understanding
of how routes evolve. Instead of imposing routes and schedules on the MATSim model, as is usually
the case for formal transit, the modeler observes and gets the paratransit routes as an output from
the model. As each operator aims to maximize their profit, the resulting network often favors the
operators’ business objectives, instead of the connectivity and mobility of the mode’s users. This
model feature accurately captures route-forming behavior in the South African case, where commuters
are often required to take multiple, longer trips instead of direct trips.

Second, the same model provides a demand-driven approach to solving a formal transit authority’s
network design problem; it can be used as a planning tool for the optimization of single transit lines or
networks. For more details on the second form of application, see Section 19.3.

For further reading: Neumann (2014) provides an understanding of the underlying principles of para-
transit services, namely minibus services, its stakeholders, fares, route functions, and patterns. Fur-
thermore, it contains an in-depth description of the minibus model, its theoretical background, and its
application to illustrative scenarios, as well as real world examples. The website of MATSim also hosts
latest implementation documentation at http://matsim.org/doxygen.

19.3 Network Planning or Solving the Transit Network Design Problem with
MATSim

A public transport system’s success depends primarily on its network design. When transport companies
try to optimize a line using running costs as the main criteria, they quickly find that demand must be
taken into consideration. The best cost structure is unsustainable if potential customers leave the
system and opt for alternatives, like private cars. The basic problem to solve: find sustainable transit
lines offering the best possible service for the customer.

More specifically,

• the customer’s demand side asks for direct, uncomplicated connections, and

• the operator’s supply side asks for profitable lines to operate.

Informal public transit systems around the world, often referred to as paratransit, are examples of
market-oriented, self-organizing public transport systems. For an in-depth coverage of paratransit, see
Section 19.2, with references. Despite the significant and increasing importance of this transport mode,
it is mainly unsubsidized and relies only on collected fares. Thus, the knowledge of paratransit—and
its ability to identify and fill market niches with self-supporting transit services—provides an interesting
approach to solving a formal public transit company’s network design problem.

The minibus module of MATSim provides a demand-driven approach to solving a formal transit authority’s
network design problem; it can be used as a planning tool for the optimization of single transit lines
or networks. In the Neumann (2014) thesis, the model was applied to two different planning problems
of the Berlin public transit authority Berliner Verkehrsbetriebe (BVG). In the first scenario, the model
constructed a transit system, from scratch, for the district of Steglitz-Zehlendorf. The second scenario
analyzed the Tegel airport closure impact on BVG’s bus network. Apart from Tegel itself, the rest of
the bus network was unaffected by the airport closure. The resulting minibus model transit system
resembled the changes BVG had scheduled for Tegel’s closure.

In conclusion, the minibus model developed in the thesis automatically adapted supply to demand. The
model not only grew networks from scratch, but also tested an existing transit line’s sustainability and
further optimized the line’s frequency, time of operation, length, and route. Again, the optimization
process was fully integrated into the behavior-rich, multi-agent simulation of MATSim, reflecting passen-

April 25, 2024 146

http://matsim.org/doxygen

Chapter 19. The “Minibus” Contribution 19.3. Network Planning or Solving the Transit Network Design Problem with MATSim

ger reactions, as well as those from competing transit services and other road users. Thus, the minibus
model can be used, along with more complex scenarios, like city-wide tolls or pollution analyses.

April 25, 2024 147

20
Destination Innovation

Authors: Andreas Horni, Kai Nagel, Kay W. Axhausen

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 12 13 14 15

Distance [km] (discrete)

Pr
ob

ab
ili

ty

0.0

0.1

0.2

0.3

�

�

�

�
� �

�
� �

� �

� �

�

�
�

�
�

� �
� �

�

�

�

�

�
�

�
� �

Microcensus
ZH with ε
ZH without ε

20.1 Basic Information

Entry point to documentation:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → locationchoice

Invoking the module:
https://github.com/matsim-org/matsim-libs/tree/master/contribs → locationchoice →
RunLocationChoiceBestResponse, RunLocationChoiceFrozenEpsilons classes

Selected publications:
Horni et al. (2012b); Horni (2013)

20.2 Introduction

Generally speaking, destination choice represents an optimization problem, where every agent searches
for his or her optimal destination according to an objective function, subject to various constraints such
as the agent’s travel time budget–as well as interactions with other agents–while competing for space-
time slots in the infrastructure. The MATSim destination innovation module provides a problem-tailored
heuristic algorithm to solve this problem.

149

https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-libs/tree/master/contribs

Chapter 20. Destination Innovation 20.3. Key Issues in Developing the Module

MATSim’s iterative base requires a mechanism (the main component of the destination innovation
module), ensuring consistent probabilistic choices over the course of iterations.

Unobserved heterogeneity, usually dominant in destination choice, is captured in the adaptable objective
function by random error terms (Horni et al., 2012b; Horni, 2013).

As well as considering competition for road infrastructure, the destination choice module can also
be configured for activities infrastructure (for example, at shopping malls’ parking lots) as shown in
Section 20.3.5 and by Horni et al. (2009).

20.3 Key Issues in Developing the Module

Key issues of integrating destination innovation into MATSim include behavioral and algorithmic prob-
lems. On the behavioral side, specification of choice sets for model estimation has not yet been
solved. On the algorithmic side, as mentioned above, destination innovation is, in principle, an ordi-
nary optimization problem. However, as agents interact, and choices are embedded in a highly dynamic
context, the problem becomes complex, particularly because targeted scenarios are usually large-scale.
Thus, as in real-world optimization problems, solutions must be based on problem-tailored heuristics
(Michalewicz and Fogel, 2004). Construction of a search space and subsequent evaluation of the search
space’s elements are important MATSim destination innovation components.

The main component however, is a mechanism to generate consistent random draws over iterations
necessary to include the objective function’s error terms (see next Section 20.3.1). This mechanism is
also applicable to other choice dimensions.

20.3.1 Error Terms

As described in Chapter 22.6, MATSim—as a utility-maximizing model—is related to the discrete choice
framework, meaning that this framework can productively guide the MATSim utility function specifica-
tion. Utility in discrete choice models is composed of a deterministic part and a random error term
representing the unobserved heterogeneity, i.e., it subsumes, both truly, i.e., inherently random, deci-
sions and the modeler’s missing knowledge about the choice and its context.

In MATSim, the utility function for route, mode and time innovation does not contain an explicit random
error term (yet). This is at least partially compensated through replanning stochasticity, in Chapter 22.6
denoted by the scale parameter µ and η. An example for this might be: route and time choices are
usually subject to significant competition. The co-evolutionary algorithm of MATSim, detailed below,
essentially assigns the resources in a random manner to the persons. For example, two identical
persons may end up with different routes, according to the order in which they undergo the replanning.
Essentially, this means that an (implicit) random term is present in the choice making.

The above, however, does not add enough unobserved heterogeneity to destination choice. Further
problems might, or might not, appear when trying to interpret this randomness, since it is added
implicitly and somewhat unsystematically. Thus, an explicit random error term εnℓq for every person
n, alternative ℓ and activity q, held stable over the iterations, is added to the scoring function during
the running of the destination innovation module (Horni, 2013). Research about the necessity of error
terms for the remaining choice dimensions is required, as discussed in Section ??.

20.3.2 Quenched Randomness

Due to random error terms, discrete choices are quantified by probabilities; for example, for the logit
model, as pnℓq = exp(Vnℓq)/

∑
j∈L exp(Vnjq), where Vnℓq is person n’s systematic utility of alter-

native ℓ for activity q. When drawing from the distribution specified by pnℓq for a population, the
aggregate choices are reproduced. This is basically also true when applied in iterative frameworks.

April 25, 2024 150

Chapter 20. Destination Innovation 20.3. Key Issues in Developing the Module

However, iterative frameworks are usually associated with some kind of learning or relaxation mecha-
nism, which is heavily distorted by repeatedly and randomly drawing from pnℓq in every iteration. In
this case, the εnℓq effectively fluctuate from iteration to iteration, which is disastrous for the algorithm’s
convergence and behaviorally implausible.

Instead, random error terms ε must remain fixed from iteration to iteration. The optimization is then
performed as a deterministic search, based on the resulting utilities Unℓq, i.e., an alternative ℓ for
person n; activity q is selected as

argmax
ℓ∈choice set

Unℓq = Vnℓq + εnℓq .

This includes, via the systematic part Vnℓq, the disutility of traveling to destination ℓ for activity q.

As stated above, random error terms must remain the same over the iterations (also discussed in Chap-
ter 22.6). In physics, this approach would be called “quenched” (sometimes also “frozen”) randomness;
all randomness is computed initially and then attached to particles or destinations, rather than instan-
taneously generating it, which would be called “annealed” randomness. Two natural approaches for
implementing quenched randomness are as follows:

(a) Freezing the applied global sequence of random numbers, meaning that a Monte Carlo method
with the same random seed is used before and after introduction of a policy measure and over
the course of iterations. Thus, error terms should come out the same way before and after the
introduction of the policy measure. Differences in the outcome can thus be directly attributed to
the policy measure.

(b) Computing and storing a separate εnℓq for every combination of person n, alternative ℓ and
activity q.

Both strategies have flaws. Approach (a) is only an option if one is certain about every single aspect
of the computational code. Literally, one additional random number, drawn in one run, but not in the
other, completely destroys the “quench” for all decisions computed later in the program. Consistency
is thus hard to achieve, especially in parallel or even distributed computing environments; substantial
machinery is necessary to ensure consistent choices. In a modular environment, as in MATSim, designed
for external plugging-in of users’ own modules—possibly drawing their own random numbers—the danger
of destroying the quench is prohibitively high and thus approach (a) is impractical.

Approach (b) is certainly more robust. However, for large numbers of decision makers and/or alterna-
tives, storing error terms is difficult. For destination innovation, one quickly has 106 decision makers
and 106 alternatives, resulting in 4 · 1012Byte = 4TB of storage space.

One may argue that this should not be a problem, since a normal person will rarely consider more than
the order of a hundred alternatives in their choice set, reducing the computational problem. Aside from
the necessity of storing every decision maker’s choice set, this converts the computational problem into
a conceptual one, since a good method to generate choice sets then needs to be found. With more
conceptual progress, this may eventually be an option; at this point, a conceptually simpler approach
is preferred.

The solution developed below is generally applicable in econometric microsimulators. The same stable
error term can be re-calculated on the fly by using stable random seeds snℓq = g(kn, kℓ , kq), containing
uniformly distributed random numbers associated with k , ℓ , and q. That is, for each person n, a random
number kn is generated and stored; the same is done with each destination ℓ . Value for the activity q
can be derived from its index in the plan, possibly combined with the person’s value kn. This reduces
the storage space dramatically, from Nq · Nn · Nℓ to Nq(Nn +Nℓ), where Nn is the number of persons
or agents and Nℓ is the number of destinations and Nq is the average number of discretionary activities
in an agent’s plan. This means that storage space is reduced to approximately 2 · 4 · 106Byte = 8MB,
which can be easily stored on any modern machine.

April 25, 2024 151

Chapter 20. Destination Innovation 20.3. Key Issues in Developing the Module

Distribution of these seeds is essentially irrelevant; any error term distribution can be generated from
any basic seed distribution. In the current version, g(kn, kℓ , kq) = (kn + kℓ + kq)× vmax is used. vmax
is the maximum (long) number that can be handled by the specific machine.

To evaluate utility for a person n visiting the destination ℓ for activity q, a sequence of Gumbel-
distributed random numbers seqnℓq is generated on the fly for every person-alternative-activity com-
bination using the seed snℓq. Some random number generators have problems in the initial phase of
drawing, e.g., the first couple of random numbers are correlated or never cover the complete proba-
bility space. As in our procedure, the random number generator is constantly re-initialized; for these
technical reasons, the error term εnℓq is not derived from the first element, but from the mth element
of the sequence seqnℓq[m]. Here, m is set to 10. This procedure is valid, as the set of all mth elements
of all different sequences is also a pseudo-random sequence, following the same distribution as the
sequences seqnℓq; clearly, true random number generators relying on physical phenomena, such as
hardware temperature, are not applicable.

20.3.3 Search Space Construction and Evaluation

MATSim destination innovation is based on best-response, rather than random mutation; in every iter-
ation, the best current alternative, including the εnℓq, is chosen. This works as long as inter-iteration
changes are small, which usually happens, given by the relatively small share of agents who re-plan.
The best-response approach is adopted due to the usually huge number of alternatives in combination
with the search space characteristics. The discrete search landscape is characterized by random noise,
because error terms are not spatially correlated (see Figure 20.0(a)). For such problems—as opposed
to continuous landscapes (see Figure 20.0(b))—efficient search methods, such as local search methods,
generally do not work.

When searching for the best choice, the large number of alternatives—prohibiting exhaustive search—is
restrained as follows (for the detailed derivation see Horni, 2013, p.51 ff.). It is assumed that travel costs
are always negative and that a person drops activities with negative net utility. Then, the maximum
potential travel effort a person is willing to invest is constrained by the maximum error term per person
and activity. This approach is promising, as very large values for Gumbel-distributed variables are rare,
meaning that a huge space must be searched for only a few persons.

This search space reduction saves a great deal of computation time; however, it is still unfeasible and
further speed-ups are necessary. Most computation time is due to travel time calculation, i.e., due to
routing, for evaluation of the alternatives in the search space. To reduce these huge routing costs, the
Dijkstra (Dijkstra, 1959) routing algorithm is not only applied forward—providing one-to-all travel times–
but also backwards, using an average estimated arrival time as initial time. This is an approximation;
thus, a probabilistic best response is applied, justified by the assumption that, during the course of
the iterations, the probabilistic choice will reduce the errors incurred by approximating travel times.

With this procedure, the required computational effort is dramatically reduced, allowing application of
destination innovation to large-scale scenarios.

20.3.4 Destination Choice Set Specification

Choice set specification is natural for choices with few alternatives; but in contrast, for problems with a
large universal choice set, specifying individual choice sets becomes a challenging computational and
behavioral issue. This is particularly true for spatial choices like destination or route choice (e.g., Pagliara
and Timmermans, 2009; Thill, 1992; Schüssler, 2010; Frejinger et al., 2009). Estimates are sensitive to
choice sets; at the same time, no established choice set definition procedure exists for spatial problems.
This means that choice sets and, hence, estimates are dependent on the modeler.

An important extension of the standard discrete choice modeling approach to treat this problem is
formed by stochastic choice set models, founded by Manski (1977); Burnett and Hanson (1979); Burnett

April 25, 2024 152

Chapter 20. Destination Innovation 20.3. Key Issues in Developing the Module

(a) Uncorrelated error terms.

travel costs (= disutility)

utility

trip origin
distance

ε

global optimum

(b) Spatially correlated error terms.

travel costs (= disutility)

utility

trip origin
distance

ε

global optimum

local optimum

Figure 20.1: Search space: The search algorithm must be able to handle correlated, as well as uncorre-
lated, error terms as given by the MNL model. Local search methods, such as hill-climbing
algorithms are only able to handle continuous search spaces; thus, for situation (a), a
best-response global search algorithm is required.

April 25, 2024 153

Chapter 20. Destination Innovation 20.3. Key Issues in Developing the Module

(1980); these integrate the choice set formation step into the estimation procedure by jointly estimating
choice set selection and selection of a particular alternative of this choice set (Manski, 1977; Ben-
Akiva and Boccara, 1995). Probabilistic choice set formation is conceptually appealing; choice sets
are, in principle, not restrained a priori by exogenous criteria, as in standard choice set specification.
However, the procedure is generally associated with combinatorial complexity, making it computationally
intractable. As a consequence, practical approaches also require mechanisms to reduce complexity
of the choice set specification problem (e.g., Ben-Akiva and Boccara, 1995, p.11). Zheng and Guo
(2008), for example, make the moderate assumption of continuous store choice sets (i.e., sets without
“holes”) around the trip origin, while Ben-Akiva and Boccara (1995)’s random-constraints model exploits
additional information on alternatives’ availability for individuals.

In conclusion, the destination innovation set specification problem is still unsolved, meaning that es-
timated models can only be fully consistently applied for the region where the model was estimated.
For MATSim, destination choice model estimation efforts are reported in Horni (2013, Chapter 5).

20.3.5 Facility Load

The influence of interaction in transport infrastructure for people’s route and departure time choice
was recognized almost a century ago (e.g., Pigou, 1920; Knight, 1924; Wardrop, 1952). It can also be
reasonably assumed that agent interaction in activities infrastructure affects travel choices (Axhausen,
2006). Marketing science provides ample evidence that agent interactions influence utility (positively
or negatively) of performing an activity (Baker et al., 1994, p.331), (Eroglu and Harrell, 1986; Eroglu and
Machleit, 1990; Eroglu et al., 2005; Harrell et al., 1980; Hui and Bateson, 1991; Pons et al., 2006).

In Horni et al. (2009), based on the Zürich scenario, a model is presented introducing competition
for activity infrastructure space-time slots. The actual load is coupled with time-dependent capacity
restraints.

Activity location load, computed for 15minute time bins, is derived from events delivered by the mobsim.
The load of one particular iteration, combined with time-dependent activity location capacity restraints,
is considered in the agents’ choice process of the succeeding iteration. In detail, this means that the
utility function term Sdur,q, described above, is multiplied by max(0; 1 − fload penalty), penalizing
agents dependent on the load of the location they frequented. fload penalty is a power function; this
has proved to be a good choice for modeling capacity restraints (remember that the well-known cost-
flow function by U.S. Bureau of Public Roads (1964) is a power function). To introduce additional activity
location heterogeneity, an attractiveness factor fattractiveness is introduced, defined to be logarithmically
dependent on the store size given by the official workplaces census.

Also for demonstration purposes, capacity restraints are exclusively applied to shopping locations; in
principle, leisure activity locations could be handled similarly. However, deriving capacity restraints for
leisure activity locations is expected to be much more difficult than for shopping locations, because far
less data is available for leisure locations and capacity restraints vary much more between different
leisure locations than between different shopping activities (hiking versus going to the movies might
be a good example).

The model allows assignment of individual time-dependent capacities to the activity locations. For the
sake of demonstration, the capacities of all shopping facilities can be set equal, where their values can
be derived from the shopping trip information given in the Swiss microcensus (Swiss Federal Statistical
Office (BFS), 2006). The total daily capacity is set so that the activity locations located in the Zürich
region satisfy the total daily demand with a reserve of 50%. In detail, the capacity restraint function
for a location l is as follows:

fload penalty,ℓ = αl ·
(

loadℓ
capacityℓ

)βℓ

April 25, 2024 154

Chapter 20. Destination Innovation 20.4. Application of the Module

with αℓ = 1/1.5βℓ , βℓ = 5. fload penalty,ℓ is the penalty factor for location ℓ as described above.

Simultaneous computation of all agents’ score reduction avoids the last-record problem discussed in
Vovsha et al. (2002). There, a sequential choice process is proposed; alternatives are removed from
later travelers’ choice sets if locations are already occupied by earlier travelers. Thus, travelers’ order is
specified arbitrarily; the last-record problem (last travelers must go a long distance to find an available
location) is significant when modeling heterogeneous travelers.

As expected, the constrained model improves result quality by reducing the number of implausibly
overcrowded activity locations.

20.4 Application of the Module

The destination innovation module has been successfully applied for the Zürich scenario (Chapter ??), as
reported in Horni (2013, p.99), for the Tel Aviv model (see Chapter ??) and for the MATSim 2030 project.
Figure 20.2 and Figure 20.3 show that, through error term scaling, distance distributions can be nicely
fitted, decreasing count data error.

April 25, 2024 155

Chapter 20. Destination Innovation 20.4. Application of the Module

(a) Shopping trips.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Distance [km] (discrete)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

�

�

�

�
�

� �
�

�
� �

� �
�

� �

�

�

�

�

�
�

�
� � �

� � � � � �

�

�

�

�

�

�
�

� � � � � � � � �

Microcensus
ZH with ε
ZH without ε

Pr
ob

ab
ili

ty

(b) Leisure trips.

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 12 13 14 15

Distance [km] (discrete)

Pr
ob

ab
ili

ty

0.0

0.1

0.2

0.3

�

�

�

�
� �

�
� �

� �

� �

�

�
�

�
�

� �
� �

�

�

�

�

�
�

�
� �

Microcensus
ZH with ε
ZH without ε

Figure 20.2: Error term runs for the Zürich scenario.

April 25, 2024 156

Chapter 20. Destination Innovation 20.4. Application of the Module

●

●

●

●

●
●

●

R
el

at
iv

e
er

ro
rs

 p
er

 li
nk

 [%
]

−100

−80

−60

−40

−20

0

20

40

60

80

100

no ε ε

Figure 20.3: Daily traffic volumes for 123 links compared to traffic counts. Per link k the relative error
is used, i.e., (volsimulated,k − volcounted,k)/volcounted,k ..

April 25, 2024 157

Chapter 20. Destination Innovation 20.5. The Module in the MATSim Context

20.5 The Module in the MATSim Context

The destination innovation module explicitly incorporates unobserved heterogeneity through random
error terms; the standard MATSim utility function, however, does not contain error terms. Randomness
measured in empirical data is included implicitly through the simulation process stochasticity, including
possible randomness in the choice itself. For destination innovation, this has led to a dramatic underes-
timation of total travel demand, making inclusion of unobserved heterogeneity inevitable. Clearly, the
problem is the impossibility of making all choices at the same level; destination choice is conditional
on mode choice which, in turn, is conditional on route choice. Hierarchical choice modeling has clearly
showed that randomness, expressed by the logit model scale parameter, needs to be larger in higher
level decisions. This chapter addresses replacing the need for more randomness in the choice model by
directly including randomness into the utility function; that randomness must be quenched, otherwise
the iterative procedure will just average it out. Whether the standard utility function might also profit
from the innovations made for this module should be a topic for future research .

MATSim replanning offers different strategies to adapt plans, ranging from random mutation via ap-
proximate suggestions to best response answers. Destination innovation is based on best response to
handle the sheer size of the alternatives set.

Although the destination innovation utility function is based on discrete choice framework, some con-
ceptual differences about the common discrete choice models application persist. As shown above,
there is no drawing from discrete choice models, but instead, maximization of an iteration-stable utility
function. The set of alternatives is not necessarily limited a priori; thus, we use the notion of a search
space and not of a choice set here.

20.6 Lessons Learned

Two interesting lessons were learned while developing the destination innovation module: first, a lesson
on preferences and space interdependence and the necessity to evaluate them in combination. When
looking at distance distributions (e.g., Figure 20.2) one might think that the functional form directly
represents the preferences, but this is not necessarily the case. In our simulations, it is the result
of a linear travel disutility, but applied in geographic space, where number of opportunities increases
with the square of the radius, in other words, with the square of travel distance. A similar emergent
effect appears when scaling random error terms. Although both negative and positive error terms are
enlarged and the average remains stable, distribution gets more skewed toward the tail; for agents’
choices, maximum values—not average values—are relevant.

The second lesson concerns simulation results’ variability. Although random elements are not present
only in destination choice, it was the largest contributor of endogenous variability when it was devel-
oped, necessitating the experiments presented by Horni et al. (2011a) (see also Section ??).

20.7 Further Reading

The main information source is Horni et al. (2012b); Horni (2013); technical details and documentation
are available at Horni (2016) and in javadoc. Further reading related to destination choice is: Horni et al.
(2013),for parking, or Horni et al. (2012a), about coupling customers’ and retailers’ choices or, in other
words, supply and demand.

April 25, 2024 158

21
How to Write Your Own Extensions and Pos-
sibly Contribute Them to MATSim

Author: Michael Zilske, Kai Nagel

Notes

Documentation for the concepts described in this chapter can be found under http://matsim.org/

javadoc → main distribution, by going to the corresponding class and interface documentation entries.
These should also point to examples.

For programming against the MATSim API, we recommend forking or cloning https://github.com/

matsim-org/matsim-example-project as a starting point. This should also clarify how MATSim can
be used as an Maven plug-in.

Code examples can be found at https://github.com/matsim-org/matsim-code-examples. Evidently, this
can also be cloned/forked, but it can also be used via the browser.

In general, we recommend to not clone or even fork the material under https://github.com/

matsim-org/matsim-libs, since it is more robust in many ways to pull it via the Maven infrastructure,
either as release (stable), or as development snapshot.

21.1 Introduction

The three main elements of the MATSim cycle, execution, scoring, and replanning (Section 1.4), operate
on what is essentially an in-memory, object-oriented data base of Person objects (Raney and Nagel,
2006). The following three elements are the main elements to configure MATSim:

Execution The mobsim can be replaced, either by an internally available alternative, or by a fully external
mobsim.

Scoring The scoring can be replaced, by possibly giving each individual agent a different recipe to
compute its score.

Replanning Arbitrary implementations of type PlanStrategy can be added to the replanning; these
either generate new plans from scratch or mutate existing ones, or they select between plans.

The simulation’s behavior can be further configured by using ControlerListeners.

159

http://matsim.org/javadoc
http://matsim.org/javadoc
https://github.com/matsim-org/matsim-example-project
https://github.com/matsim-org/matsim-example-project
https://github.com/matsim-org/matsim-code-examples
https://github.com/matsim-org/matsim-libs
https://github.com/matsim-org/matsim-libs

Chapter 21. How to Write Your Own Extensions ... 21.2. Preparation: Scripts-in-Java

The mobsim generates a stream of events. These are primarily used in two places:

• The scoring uses events to track each agent’s success at executing its plan, and computes the
scoring value based on this.

• PlanStrategy modules use events to build approximate models of the world in which they operate.
For example, the router obtains time-dependent expected link travel times from a TravelTime

object, which in turn listens to link enter and link exit events.

Additionally, one can write any sort of event handlers for analysis during the iterations, or after a run
by evaluating the events file.

Some modules are so large that fully replacing them in order to adapt the simulation system to one’s
needs is too much work. These are, in particular,

• the QSim, which is the default implementation of the Mobsim interface, and

• the router.

To address this issue, it is possible to add additional executable code into the execution flow of the QSim
by MobsimListeners in a similar way as this is possible with the ControlerListeners mentioned above.
The router, in contrast, is most importantly configured by replacing the definition of the generalized
travel cost, or by adding/replacing the routing modules for specific modes.

21.2 Preparation: Scripts-in-Java

As stated in Sec. 3.2.3, we recommend writing “scripts in Java”. The syntax, again, is roughly:
... main(...) {

// construct the config object:

Config config = ConfigUtils.xxx (...) ;

config.xxx (). setYyy (...) ;

...

// load and adapt the scenario object:

Scenario scenario = ScenarioUtils.loadScenario(config) ;

scenario.getXxx (). doYyy (...) ; // (*)

...

// load and adapt the controler object:

Controler controler = new Controler(scenario) ;

controler.doZzz (...) ; // (**)

...

// run the iterations:

controler.run() ;

}

Again, as a starting point, clone/fork https://github.com/matsim-org/matsim-example-project, and
for coding examples, look at https://github.com/matsim-org/matsim-code-examples.

Evidently, such a script-in-Java can be used to

• modify the Config, by adding or changing config entries

• modify the Scenario, by adding or changing scenario entries, and to

• modify the Controler, by a syntax explained below.

April 25, 2024 160

https://github.com/matsim-org/matsim-example-project
https://github.com/matsim-org/matsim-code-examples

Chapter 21. How to Write Your Own Extensions ... 21.3. MATSim Extension Points: General

21.3 MATSim Extension Points: General

This chapter (Chapter 21) describes what could be called the Service Provider Interface (SPI) of MATSim.
Historically, the main entry point for writing a MATSim extension had been to literally extend (in the
Java sense, i.e. to inherit from) the Controler class. Essentially, one would override the methods calling
the mobsim, the scoring, and/or the replanning, as explained in Section 21.1. This is now discouraged.
While this pattern worked when a each member of the team was working on extending the MATSim
core by a different aspect, it fails when it comes to integrating those aspects to a single product:
It is not possible to straightforwardly combine a PublicTransportControler, an EmissionsControler, a
RoadPricingControler and an OTFVisControler, if one wants to combine them to visualize the emissions
of buses on toll roads. Also see Section ??. In contrast, with the injection approach described in Sec. 21.6
it is possible to combine modules while keeping their respective dependencies independent.

21.4 Extension Points Related to Scenario

21.4.1 Customizable and ObjectAttributes

Attributable, as a facility to attach arbitrary information to MATSim data types, was already discussed in
Section 10.1. This section will discuss two preceeding approaches, ObjectAttributes and Customizable.
In our opinion, they are no longer needed for new developments, but it may be necessary to understand
them when reading older code.

Customizable Some MATSim data types implement the Java interface Customizable, to which additional
material can be attached by a syntax of type
<dataType >. getCustomAttributes.put("myAttribName",myAttribValue) ;

This is similar to Attributable, except that the additional information is not written to file. The decision
to add Attributable rather than to modify Customizable was made because in order to write such an
additional object to file and read it back in it is necessary to have a method that converts the objects
to strings and back.

For additional information, see the Customizable interface under http://matsim.org/javadoc → main
distribution.

ObjectAttributes Besides Customizable, a helper container called ObjectAttributes is available. It
essentially attaches arbitrary additional information to objects that have an ID, by a syntax of type
attribs.putAttribute(id, attribName , attribValue) ;

where id is the object’s ID, attribName is the name (type) of the attribute to be stored (e.g., “age”),
and attribValue is the value of the attribute (e.g., “24”).

The package provides readers and writers for such attributes. It is thus possible for additional code to,
say, generate additional attributes by preprocessing, write them to file, and read them back for every
run. That approach is used, for example, by the Gauteng scenario (Chapter ??) to pre-allocate e-tag
ownership to persons.

Please check the documentation of ObjectAttributes (see http://matsim.org/javadoc → main distri-
bution) for more details and pointers to examples.

Clearly, ObjectAttributes cannot be used for data types that do not have an ID. This is, for example,
the case with plans, activities, or legs, which are contained inside a data type with an ID (the per-
son data type), but which do not possess an ID of their own and are therefore not addressable by
ObjectAttributes.

April 25, 2024 161

http://matsim.org/javadoc
http://matsim.org/javadoc

Chapter 21. How to Write Your Own Extensions ... 21.5. Events

21.4.2 Additional Scenario Elements

The object-oriented, in-memory database which holds the Person objects with their plan memories is
accessible via the Population interface. The Network interface gives access to the traffic network graph,
consisting of links and nodes. There is a TransitSchedule interface which represents the public transit
schedule. Your own modeling tasks may need an additional data container like these. We call them
scenario elements.

Scenario is the interface which ties all scenario elements together. You can add your own named
scenario element to Scenario, by a syntax of type
final MyScenarioElement myScenarioElement = new MyScenarioElement ();

scenario.addScenarioElement(MyScenarioElement.NAME , myScenarioElement);

and retrieve it by a syntax of type
MyScenarioElement mm = (MyScenarioElement) scenario.getScenarioElement(MyScenarioElement.NAME) ;

See RunScenarioElementExample in matsim-code-examples for an example.

21.5 Events

The mobsim moves the agents around in the virtual world according to their plans and within the bounds
of the simulated reality. It documents their moves by producing a stream of events. Events are small
pieces of information describing the action of an object at a specific time. Examples of such events are
(also see Figure 2.4):

• An agent finishes an activity.

• An agent starts a trip.

• A vehicle enters a road segment.

• A vehicle leaves a road segment.

• An agent boards a public transport vehicle.

• An agent arrives at a location.

• An agent starts an activity.

Each event has a timestamp, a type, and additional attributes required to describe the action like a
vehicle id, a link id, an activity type or other data. In theory, it should be possible to replay the mobsim
just by the information stored in the events. While a plan describes an agent’s intention, the stream of
events describes how the simulated day actually was.

As the events are so basic, the number of events generated by a mobsim can easily reach a million or
more, with large simulations even generating more than a billion events. But as the events describe all
the details from the execution of the plans, it is possible to extract essentially any kind of aggregated
data one is interested in. Practically all analyses of MATSim simulations make use of events to calculate
some data. Examples of such analyses are the average duration of an activity, average trip duration or
distance, mode shares per time window, number of passengers in specific transit lines and many more.

The scoring of the executed plans makes use of events to find out how much time agents spend at
activities or for traveling. Some replanning modules might make use of events as well: The router for
example can use the information contained in events to figure out which links are jammed at certain
times and route agents around that jam when creating new plans.

Handling Events MATSim extensions can watch the mobsim by interpreting the stream of events. This
is done by implementing the EventHandler interface and registering the implementation with the frame-

April 25, 2024 162

https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunScenarioElementExample

Chapter 21. How to Write Your Own Extensions ... 21.6. Configuring the Controler (= inject syntax)

work. The lifecycle of an EventHandler can be chosen by the developer. Normally, an EventHandler

lives as long as the simulation run. It is notified before the beginning of each new iteration so that its
state can be reset to listen to a new iteration.

See RunEventsHandling in matsim-code-examples for several pointers to coding examples.

Producing Your Own Events One can extend the MATSim event model by extending the Event class
to define own event types. Events can be produced from all places in the code which are executed
during the running mobsim, and in particular from other EventHandler instances. Assume for example
you want to analyze left-turns. A good starting point would be to specify a LeftTurnEvent class, and
produce an instance of this class whenever a vehicle does a left-turn. You may do this from a class
which is a LinkLeaveEventHandler as well as a LinkEnterEventHandler. A LinkLeaveEvent is produced
every time a vehicle leaves a road segment, and a LinkEnterEvent is produced when it enters the next
road segment. Pairing each LinkLeaveEvent with the next LinkEnterEvent for the same vehicle gives a
model for a vehicle crossing a node. At this point, your code would look at the road network model to
determine if this was a left-turn, and if so, produce a LeftTurnEvent.

See the RainOnPersonEvent in RunCustomScoringExample in matsim-code-examples for an example. (In
that particular example, the rain event is caught in the scoring function, which is, in fact, not totally
obvious.)

21.6 Configuring the Controler (= inject syntax)

Controler is the main user-facing class of MATSim. It used to be common in the MATSim community to
inherit from it, but this made core maintenance difficult and is in consequence now no longer possible,
i.e. the Controler class is now final. Please do not start from old examples that use such inheritance
from Controler; they are probably also deprecated in other ways. Rather, use the binding and injection
syntax described in the following.

The standard approach for configuring the Controler approximately is
controler.addOverridingModule(new AbstractModule (){

@Override public void install () {

this.<tab completion > ...

}

}) ;

An easy one is
this.bindMobsim ().to...

This replaces the mobsim.

Since this will not be a frequent use case, let us turn to another one:
this.addEventHandlerBinding ().to... ;

This adds a new event handler to the already existing ones.

Possibilities to continue include

...to(MyHandler.class) ;

...toInstance(new MyHandler(...)) ;

...toProvider(new MyProvider(...)) ;

These options will be described in the following.

21.6.1 Binding a Class (= an Implementation Type)

The simplest variant is the first, marked by the fact that it is also the shortest. MyHandler then approx-
imately looks like

April 25, 2024 163

https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunEventsHandling
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunCustomScoringExample

Chapter 21. How to Write Your Own Extensions ... 21.6. Configuring the Controler (= inject syntax)

class MyHandler implements XxxEventHandler {

private final Scenario scenario ;

@Inject MyHandler(Scenario scenario , ...) {

this.scenario = scenario ;

...

}

...

}

Note the @Injected constructor. All arguments of the constructor (in this case: Scenario) need to be
bound by other binding statements. The MATSim logfile gives a list of bound objects. Also note that
the constructor can be package-protected even when the class is not, making the class uninstantiable
by outside users, which may often be desired.

Besides injecting variables via the constructor, it is also possible to inject them directly:
class MyHandler implements XxxEventHandler {

@Inject Scenario scenario ;

...

}

This syntax is less flexible then injection of the constructor, but more concise.

21.6.2 Binding an Instance

Instead of a class, one can bind an instance, in the example denoted by new MyHandler(...), but it can
also be a variable referring to an instance generated earlier. This is less flexible in terms of injection,
but has the advantage that it is closest to what many people may be used to, since it just generates
an instance in the standard way. It is also perfectly fine for prototype development; the conversion
into using injected variables can still be done later, when other people possibly start using the newly
implemented functionality.

21.6.3 Binding a Provider (not important to get started)

The third variant that is used frequently in MATSim is to bind a Provider, which is a creational class
similar to a factory. The syntax approximately is
class MyProvider implements Provider <XxxHandler > {

private Scenario scenario ;

@Inject MyProvider(Scenario scenario , ...) {

this.scenario = scenario ;

...

}

@Override public XxxHandler get() }

...

return xxxImpl ;

}

...

}

This allows to specifically construct the injected class as needed. This is often used in the MATSim
core code to configure injected classes depending on what is defined in the config. Advantages over
conventional factories/builders include:

• The creational syntax is standardized to the get() method.

• The creational method has no argument, obliterating the need to define a correct list of necessary
arguments.

• Since the constructor is injected, it can have as arguments arbitrary bound material. This also
means that this argument list can be modified later without having to touch calling code.

April 25, 2024 164

Chapter 21. How to Write Your Own Extensions ... 21.6. Configuring the Controler (= inject syntax)

21.6.4 MATSim default bindings

The MATSim default bindings can be found from ControlerDefaultsModule, see matsim.org/javadoc.

Also see https://google.github.io/guice/api-docs/latest/javadoc/index.html?com/google/inject/

Binder.html, in particular “consult ... examples”, which states that it is easier to look at examples than
trying to understand the injection code itself.

21.6.5 Advantages of the injection framework

Standard dependency injection works via constructors:
ModuleA moduleA = new ModuleA (...) ;

ModuleB moduleB = new ModuleB(moduleA , ...) ;

This is an entirely practical and even preferrable approach in situations where it works. However, for a
multi-person project it has the disadvantages that modules need to be generated in a certain sequence,
and that changing module dependencies means refactoring all constructors of that module, even if
these constructors sit in other users’ repositories.

The dependency framework removes these restrictions:

• Dependencies of a module on other modules are provided by the inject syntax. In consequence,
changing such dependencies does not change the code of persons using the module, as long as
the module has dependencies that are tyically bound also in other persons’ code (such as the
MATSim defaults).

• The injection framework sorts out module dependencies internally, a bit similar to the Java com-
piler that sorts out class dependencies. That is, the injection framework constructs a module
dependency graph, then starts with modules without dependencies, next constructs modules
that only depend on the ones already built, etc. This will, evidently, only work as long as con-
struction is possible at all, i.e., , there are no circular dependencies on implementations. Circular
dependencies that depend only on references, in contrast, are resolved by the framework.

21.6.6 Pre-configured MATSim extension points

Arbitrary material can be bound with the above syntax, and re-used via the @Inject statement. This
is particularly useful for code that extends MATSim, which is not constrained in any way to use the
injection framework for its own purposes.

In order to make the default MATSim extension points more easily accessible, they are presented as
specific methods. Some of them are:

// unnamed adders:

this.addControlerListenerBinding ()... ;

this.addEventHandlerBinding ()... ;

this.addMobsimListenerBinding ()... ;

// named adders:

this.addPlanSelectorForRemovalBinding(selectorName)... ;

this.addPlanStrategyBinding(selectorName)... ;

this.addTravelTimeBinding(mode)... ;

this.addTravelDisutilityFactoryBinding(mode)... ;

// setters:

this.bindLeastCostPathCalculatorFactory ()... ;

this.bindScoringFunctionFactory ()... ;

this.bindMobsim ()... ;

In addition, there are the convenience methods this.bindNetworkTravelTime ()... ;

this.bindCarTravelDisutilityFactory ()... ;

April 25, 2024 165

matsim.org/javadoc
https://google.github.io/guice/api-docs/latest/javadoc/index.html?com/google/inject/Binder.html
https://google.github.io/guice/api-docs/latest/javadoc/index.html?com/google/inject/Binder.html

Chapter 21. How to Write Your Own Extensions ... 21.6. Configuring the Controler (= inject syntax)

Note that in some situations a creational class (factory) is bound rather than the class itself. This can
lead to the somewhat confusing situation that there is a Provider that creates such a factory. This
variant is needed when the creational method in the factory takes an argument itself, as, e.g., , in

ScoringFunction createScoringFunction(Person person) { ... } ;

This happens in particular when the created objects on MATSim data objects, such as Persons or Links.

21.6.7 ControlerListener: Handling Controler Events

ControlerListeners are called at the transitions of the MATSim loop (Figure 21.1), where so-called
ControlerEvents are fed to the listeners.

initial
demand analysesexecution scoring

replanning

1 2 86

2

3 4
5

7

Controler Events: 1 Simulation Starts (“Startup”)
2 Iteration Starts
3 Before Mobsim
4 After Mobsim

5 Scoring
6 Iteration Ends
7 Replanning
8 Simulation Ends (“Shutdown”)

(mobsim)

Figure 21.1: Controler events.

The following ControlerListeners are currently available: StartupListener, IterationStartsListener,
BeforeMobsimListener, AfterMobsimListener, ScoringListener, IterationEndsListener,
ReplanningListener, and ShutdownListener.

A sample listener might look as follows.
public class MyControlerListener implements StartupListener {

@Override

public void notifyStartup(StartupEvent event) {

...

}

}

ControlerListeners are called in undefined order, meaning that AControlerListener may only rely on
the computation of BControlerListener if BControlerListener makes that computation in an earlier
transition. For instance, if BControlerListener is a StartupListener and loads data into a Map on start-
up, AControlerListener can be an IterationStartsListener and use that Map. But do not write two
IterationStartsListeners where the first puts some data into a Map and the second expects to find it
there, they may be called in any order.

Please check the documentation of ControlerListener (see http://matsim.org/javadoc → main dis-
tribution) for more details and RunControlerListenerExample in matsim-code-examples for examples.

April 25, 2024 166

http://matsim.org/javadoc
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunControlerListenerExample

Chapter 21. How to Write Your Own Extensions ... 21.6. Configuring the Controler (= inject syntax)

21.6.8 Mobsim Listener

A MobsimListener is called in each mobsim timestep. This can, for example, be used to produce a
custom event which is not triggered by another event. For example, if you wanted to include a model of
weather conditions into the simulation, you could use this extension point to decide in every time step
if it should start or stop raining on a certain road segment, and produce custom events for this. You
would then calculate rain exposure per agent by adding an EventHandler which handles LinkEnterEvent,
LinkLeaveEvent and your custom rain events.

Note that EventHandler and MobsimListener instances may be run in parallel by the framework. It is
generally not safe to share state between them. The framework guarantees that the methods of an
EventHandler instance are called sequentially, but two different instances may run on different threads
of execution. Access to shared data must be synchronized externally. Whenever possible, different
EventHandler instances should only communicate through events.

See https://github.com/matsim-org/matsim-libs/tree/master/contribs → main distribution →
MobsimListener for more details and RunMobsimListenerExample in matsim-code-examples for an ex-
ample.

21.6.9 TripRouter

The TripRouter is a service object providing methods to generate trips between locations, given a (main)
mode, a departure time and a Person. A trip is a sequence of plan elements representing a movement.
It typically consists of a single leg (Leg object), or of a sequence of legs with “stage activities” in
between. For instance, public transport trips contain pt interaction activities, representing changes
of vehicles in public transport trips.

Using the Router A TripRouter instance provides a few methods to work with trips, namely

• compute a route for a given mode and O-D pair, for a Person with a specific departure time;

• identify the main mode of a trip. For instance, a trip composed of several walk and pt legs should
be identified as a public transport trip;

• identify which activities are stage activities, and, by extension, identify the trips in the plan: A
trip is the longest sequence of consecutive Legs and stage activities.

Please check https://github.com/matsim-org/matsim-libs/tree/master/contribs → main distribu-
tion → TripRouter for more documentation and RunPluggableTripRouterExample in matsim-code-
examples for an example.

Configuring the Router The TripRouter computes routes by means of RoutingModule instances, one of
which is associated with each mode. A RoutingModule defines the way a trip is computed, and is able
to identify the stage activities it generates.

The association between modes and RoutingModule instances is configurable. You can even provide
you own RoutingModule implementations. Do this if your use-case requires custom routing logic, for
instance, if you want to implement your own complex travel mode.

Please check once more https://github.com/matsim-org/matsim-libs/tree/master/contribs → main
distribution → TripRouter for documentation and RunTeleportationMobsimWithCustomRoutingExample
in matsim-code-examples for an example.

21.6.10 Mobsim

April 25, 2024 167

https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunMobsimListenerExample
https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunPluggableTripRouterExample
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunPluggableTripRouterExample
https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunTeleportationMobsimWithCustomRoutingExample
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunTeleportationMobsimWithCustomRoutingExample

Chapter 21. How to Write Your Own Extensions ... 21.6. Configuring the Controler (= inject syntax)

Alternative mobsim in Java Besides adding MobsimListener implementations to enrich the standard
mobsim, it is also possible to replace the entire mobsim by a custom implementation. A mobsim is
basically a Runnable which is supposed to take a scenario and produce a stream of events. This allows
you to use the co-evolutionary framework of MATSim while replacing the traffic model itself.

Please check https://github.com/matsim-org/matsim-libs/tree/master/contribs → main distribu-
tion → Mobsim for documentation and RunOwnMobsimExample in matsim-code-examples for an exam-
ple.

Alternative mobsim in another programming language Your implementation need not be written in Java.
The framework includes a helper class to call an arbitrary executable which is then expected to write
its event stream into a file. This pattern has been used successfully many times, see, e.g., Section ??,
or the Compute Unified Device Architecture, a parallel computing platform and API by NVIDIA (CUDA)
implementation of the mobsim by Strippgen (2009). Note that we have found consistently that an
external mobsim does not help with computing speed: Whatever is gained in the mobsim itself is more
than lost again by the necessary data transfer between MATSim and the external mobsim. As of now,
we cannot yet say if newer data exchange techniques, such as Google Protocol Buffers, may change the
situation. Until then, the external interface should rather be seen as the option to inject a different,
possibly more realistic, mobsim into MATSim.

21.6.11 PlanStrategy

Replanning in MATSim is specified by defining a set of weighted strategies. In each iteration, each agent
makes a draw from this set and executes the selected strategy. The strategy specifies how the agent
changes its behavior. Most generally, it is an operation on the plan memory of an agent: It adds and/or
removes plans, and it marks one of these plans as selected.

Strategies are implementations of the PlanStrategy interface. The two most common cases are:

• Pick one plan from memory according to a specified choice algorithm.

• Pick one plan from memory at random, copy it, mutate it in some specific aspect, add the mutated
plan to the plan memory, and mark this new plan as selected.

The framework provides a helper class which can be used to implement both of these strategy templates.
The helper class delegates to an implementation of PlanSelector, which selects a plan from memory,
and to zero, one or more implementations of PlanStrategyModule, which mutate a copy of the selected
plan.

The maximum size of the plan memory per agent is a configurable parameter of MATSim. Independent
of what the selected PlanStrategy does, the framework will remove plans in excess of the maximum
from the plan memory. The algorithm by which this is done is another implementation of PlanSelector
and can be configured.

The four most commonly used strategies shipped with MATSim are:

• Select from the existing plans at random, which are weighted by their current score.

• Mutate a random existing plan by re-routing all trips.

• Mutate a random existing plan by randomly shifting all activity end times backwards or forwards.

• Mutate a random existing plan by changing the mode of transport and re-routing one or more
trips or tours.

Routes are computed based on the traffic conditions of the previous iteration, which are measured
by means of an EventHandler. Using the same pattern, your own PlanStrategy can use any data

April 25, 2024 168

https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunOwnMobsimExample

Chapter 21. How to Write Your Own Extensions ... 21.7. Additional Config Groups

which can be computed from the mobility simulation. The source code of the standard PlanStrategy

implementations can be used as a starting point for implementing custom behavior.

Re-routing as a building block of many replanning strategies is a complex operation by itself. It can even
be recursive: For example, finding a public transport route may consist of selecting access and egress
stations as sub-destination, finding a scheduled connection between them, and finding pedestrian
routes between the activity locations and the stations. With the TripRouter interface, the framework
includes high-level support for assembling complex modes of transport from building blocks provided
by other modules or the core.

Please check https://github.com/matsim-org/matsim-libs/tree/master/contribs → main distribu-
tion → PlanStrategy for documentation, and RunPluggablePlanStrategyInCodeExample in matsim-code-
examples, RunPluggablePlanStrategyFromFileExample, and RunWithMultithreadedModule for examples.

21.6.12 Scoring

The parameters of the default MATSim scoring function (Chapter 10) are configurable. The code, which
maps a stream of mobsim events to a score for each agent, is placed behind a factory interface and
replaceable. However, replacing it means replacing the entire utility formulation. For instance, a module
which simulates weather conditions would probably calculate penalties for pedestrians walking in heavy
rain, and the Cadyts (Chapter ??) calibration scheme already uses utility offsets in its formulation. A
modeler who wishes to compose a scoring function from the Charypar-Nagel utility, the rain penalty
and the calibration offset needs to do this manually, in code, accessing the code of all three modules
contributing to the score and (for instance) summing up their contributions.

Keep in mind that score and replanning are not inherently coupled or automatically consistent with each
other. Consider a scoring function which penalizes left-turns. This is straight-forward to program: You
would iterate over every route an agent has taken. Looking at the Network, you would calculate for each
change of links if you consider it a left-turn, and if so, add a (negative) penalty to the score. However,
this would not by itself lead to a solution where routes are distributed according to this scoring function.
The reason is that the default replanning only proposes fastest routes, in other words, least-cost paths
with respect to travel time. By default, the plan memory of an agent will only ever contain routes which
have in one iteration been a fastest route. The behavior of the router is, in this case, inconsistent with
the utility formulation.

Please check https://github.com/matsim-org/matsim-libs/tree/master/contribs → main distribu-
tion → ScoringFunction for documentation, and RunCustomScoringExample in matsim-code-examples,
RunIndividualizedScoringExample, RunScenarioWithCustomScoring and RunOwnMoneyScoringExample

for examples.

21.7 Additional Config Groups

The configuration of a MATSim run is a grouped list of key-value pairs, stored in XML format in the config
file (see Section 21.7).

At runtime, the entire configuration is stored in an instance of Config, from which instances of
ConfigGroup can be accessed by their name. Config groups that are not in the main distribution need
to be explicitly loaded; an approximate example is the following:
MyExternalConfigGroup myConfig

= ConfigUtils.addOrGetModule(controler.getConfig(), MyExternalConfigGroup.class);

The author of an extension can subclass the ConfigGroup class to provide named accessors for the
parameters. A possibly better way is to subclass from ReflectiveConfigGroup, which you can use if
you want to define the mapping of named parameters to accessors using Java annotations.

April 25, 2024 169

https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunPluggablePlanStrategyInCodeExample
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunPluggablePlanStrategyInCodeExample
https://github.com/matsim-org/matsim-libs/tree/master/contribs
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunCustomScoringExample

Chapter 21. How to Write Your Own Extensions ... 21.8. MATSim extensions

See RunReflectiveConfigGroupExample in matsim-code-examples for an example.

21.8 MATSim extensions

Many MATSim extensions can now also be added via the inject framework. The syntax typically looks
as follows:

controler.addOverridingModule(new AbstractModule (){

@Override public void install () {

this.install(new XyzModule ()) ;

}

}) ;

where Xyz often has some relation to the name of the extension.

If the extension is part of the main distribution, this will be it. Otherwise, the extension also needs
to be added into the pom.xml file in order to make Maven load it. See, e.g. RunRobotaxiExample in
matsim-code-examples, RunMinibusExample, and RunTransitWithOtfvisExample.

This is also the place where the additional config sections according to Sec. 21.7 become most important,
since it often makes sense to configure the extension module from a config section rather than entirely
in free-form Java code.

21.9 Conclusion

After forking or cloning the MATSim example project, one can use the example scripts-in-Java in that
project as starting points for own such scripts-in-Java. These can use all the facilities descripted in this
chapter, including the possibility to bind and then use arbitrary own material.

Also, existing MATSim extensions can be used in this way. In particular, it is very straightforward to
include such extensions as additional Maven dependencies into the pom.xml file and then use them in
this way.

April 25, 2024 170

https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunReflectiveConfigGroupExample
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunRobotaxiExample
https://github.com/matsim-org/matsim-code-examples/search?q=filename:RunRobotaxiExample

22
Organization: Development Process, Code
Structure and Contributing to MATSim

Authors: Marcel Rieser, Andreas Horni, Kai Nagel

This chapter describes how new functionality enters MATSim. It describes the MATSim team and commu-
nity, the different roles existing in the MATSim project, the development drivers and processes, and the
tools used for integration. The goal is to provide an overview of the development process so that one
quickly finds access to the MATSim community and is able to efficiently contribute to MATSim, based
on one role or another.

22.1 MATSim’s Team, Core Developers Group, and Community

The MATSim team currently consists of three research groups and two companies:

• the VerkehrsSystemPlanung und Verkehrstelematik – The Transport Systems Planning and Trans-
port Telematics group at TU Berlin (VSP) group at the Institut für Land- und Seeverkehr – Institute
for Land and Sea Transport Systems (ILS), TU Berlin, led by Prof. Dr. Kai Nagel,

• the VerkehrsPLanung (VPL) group at the Institut für Verkehrsplanung und Transportsysteme –
Institute for Transport Planning and Systems (IVT), ETH Zürich, led by Prof. Dr. Kay W. Axhausen,

• the Mobility and Transportation Planning group at the Future Cities Laboratory (FCL), based in
Singapore and led by Prof. Dr. Kay W. Axhausen, and

• Senozon AG, based at Zürich with subsidiaries in Germany and Austria, founded by former PhD
and research students,

171

Chapter 22. Organization: Development Process, Code Structure and Contributing to MATSim22.1. MATSim’s Team, Core Developers Group, and Community

• Simunto GmbH, based at Zürich, founded by a former PhD and research student.

As is common in research, the university groups’ composition changes frequently. Over the last decade
more than 50 people, as listed earlier, contributed to MATSim.

A small group of the MATSim team defines the MATSim core developers group, maintaining MATSim’s
core as defined below in Section 22.3.2.

In addition, there is a MATSim community composed of closely connected research groups in other
cities, e.g., Stockholm, Pretoria, Poznan, and Jülich, as well as more loosely connected external users
coming together, e.g., at the annual MATSim User Meeting (see Figure 22.1).

MATSim is open-source software under the GNU General Public License version 2.0 (GPLv2). You are
also very welcome to contribute to the code base as described in Section 22.6. New contributors are
mentored in the beginning to become familiar with the project and the coding conventions.

April 25, 2024 172

Chapter 22. Organization: Development Process, Code Structure and Contributing to MATSim22.1. MATSim’s Team, Core Developers Group, and Community

MATSim Seminar 2008 MATSim UserMeeting 2009

MATSim Developer Meeting 2009

MATSim UserMeeting 2010

MATSim Developer Meeting 2011

MATSim Developer Meeting 2013

MATSim Developer Meeting 2015

MATSim UserMeeting 2012

Source: ©Dr. Marcel Rieser, Simunto GmbH

Figure 22.1: MATSim events and community.

April 25, 2024 173

Chapter 22. Organization: Development Process, Code Structure and Contributing to MATSim22.2. Roles in the MATSim Community

22.2 Roles in the MATSim Community

The MATSim community includes the following roles:

• The MATSim user uses the official releases or nightly builds and runs the MATSim core with the
config file (Section 3.2.1). He or she does not write computer code. Part I of the book is dedicated
to the MATSim user. On the web page, he or she finds relevant information in the user’s guide
section and in the user’s mailing list users@matsim.org.1 There is also a list of questions and
answers under http://matsim.org/faq.

Users should
also remember to consult the files logfileWarningsErrors.log and output_config.xml.gz, as
also explained in Section 2.4. The former file is an extract from logfile.log, but only contains
the warnings and errors. The latter is a complete dump of the currently available configuration
options, including comments to most options.

• The MATSim power user is a MATSim user with knowledge on how to use the additional modules
presented in the book’s Part II. He or she does not program but knows how to use MATSim
scripts-in-Java prepared by others or her/himself, as shown in Section 3.2.3. Parts I and II of the
book are helpful to the MATSim power user. Information about extensions can be found under
http://matsim.org/extensions. Most extensions come with an example script-in-Java. Again,
questions and answers are under http://matsim.org/faq.

• The MATSim developer extends MATSim by programming against the MATSim API (Section 3.2.5).
He or she also finds his or her information in Part II of the book, in particular, in Chapter 21, on
the web page in the Developer’s Guide, and in the mailing list developers@matsim.org.

• There are relatively few MATSim core developers in the MATSim team. These persons make nec-
essary modifications of the core (as defined in Section 22.3.2), usually after having discussed
them in the issue tracker (http://matsim.org/issuetracker), in the MATSim committee, or at a
developer meeting (see below).

22.3 Code Base

The various pieces of MATSim are delineated by Maven projects and sub-projects. The Maven layout
corresponds to the layout of the Git repository.2 Note that the Java package structure does not directly
correspond to the Maven/Git layout.

22.3.1 Main Distribution

The “MATSim main distribution” corresponds to the “matsim” part of the Git repository. It is the part of
the code that the MATSim team feels primarily responsible for. At the time of writing, the MATSim main
distribution contains following packages:

• org.matsim.analysis.*, containing certain analysis packages that are added by default to every
MATSim run.

• org.matsim.api.*, see Section 22.3.2.

• org.matsim.core.*, see Section 22.3.2.

1During the writing of this book, the information that had so far been contained in the User’s Guide was moved to this
book. Therefore, the User’s Guide section on the web page is currently essentially empty, and may be removed.

2 MATSim is currently at GitHub under https://github.com/matsim-org/matsim-libs. The exact path name may change
in the future, e.g., because of changes at GitHub.

April 25, 2024 174

http://matsim.org/faq
http://matsim.org/extensions
http://matsim.org/faq
http://matsim.org/issuetracker
https://github.com/matsim-org/matsim-libs

Chapter 22. Organization: Development Process, Code Structure and Contributing to MATSim 22.3. Code Base

• org.matsim.counts.*, see Section 10.4.

• org.matsim.facilities.*, see Section 10.5.

• org.matsim.households.*, see Section 10.6.

• org.matsim.jaxb.*, containing automatically or semi-automatically generated adapter classes to
read XML files using Java Architecture for XML Binding (JAXB).

• org.matsim.lanes.*, see Chapter ??.

• org.matsim.matrices.*, containing (somewhat ancient) helper classes to deal with matrices, in
particular, origin-destination-matrices.

• org.matsim.population.*, mostly containing a collection of algorithms that go through the pop-
ulation and modify persons or plans.

• org.matsim.pt.*, see Chapter 12.

• org.matsim.run, see Section 22.3.2.

• org.matsim.utils.* containing various utilities such as the much-used ObjectAttributes (see Sec-
tion 21.4.1).

• org.matsim.vehicles.*, see Section 10.7.

• org.matsim.vis.*, containing helper classes to write MATSim information, in particular from the
mobsim, to file. This has to a large extent been superseded by the Via visualization package (see
Chapter 5).

• org.matsim.visum.*, containing code to input data from VISUM.

• org.matsim.withinday.*, see Chapter ??.

• tutorial.*, containing example code of how to use MATSim, referenced throughout this book.

22.3.2 Core

The core is part of the main distribution (see the previous Section 22.3.1) and contains material that is
considered basic and indispensable, and resides in the packages

• org.matsim.api.*

• org.matsim.core.*

• org.matsim.run.*

The MATSim core is maintained by the MATSim Core Developers Group.

22.3.3 Contributions

The idea of the contributions part of the repository is to host community contributions. Historically,
most contributors are from the MATSim team, but this is not a requirement.3 The code is maintained
by the corresponding contributor. Code in this section of the repository is considered more stable than
code in playgrounds. The Java packages often have the root org.matsim.contrib.*, but this is not
mandatory.

At the time of writing, there are the following contributions (= extensions which are in the “contrib”
part of the repository), listed in alphabetical order:

3 It is currently at GitHub under https://github.com/matsim-org/matsim-libs/tree/master/contribs.

April 25, 2024 175

https://github.com/matsim-org/matsim-libs/tree/master/contribs

Chapter 22. Organization: Development Process, Code Structure and Contributing to MATSim 22.3. Code Base

• accessibility, presented in Chapter ??.

• analysis, presented in Chapter 14.

• cadytsIntegration, presented in Chapter ??.

• common is not a true contrib, i.e., it does not provide additional functionality by itself. Instead, it is
a place where code used by several contribs, which has not yet made it into the main distribution
is located. It also contains some long-running integration tests that are run at each build (i.e.,
more often than those contained in the integration contrib described below).

• dvrp, presented in Chapter 18.

• emissions, presented in Chapter 15.

• freight, presented in Chapter ??.

• freightChainsFromTravelDiaries, presented in Chapter ??.

• grips, presented in Chapter ??.

• gtfs2matsimtransitschedule, presented in Chapter ??.

• integration is not a true contrib, i.e., it does not provide additional functionality. Instead, it is
a place where integration tests that should run daily or weekly (instead of as often as possible)
can be committed.

• locationchoice, presented in Chapter 20.

• matrixbasedptrouter, presented in Chapter ??.

• matsim4urbansim, presented in Chapter ??.

• minibus, presented in Chapter 19.

• multimodal, presented in Chapter ??.

• networkEditor, presented in Chapter ??.

• otfvis, presented in Chapter 7.

• parking, presented in Chapter ??.

• roadpricing, presented in Chapter ??.

• socnetgen, presented in Chapter ??.

• socnetsim, presented in Chapter ??.

• transEnergySim, presented in Chapter ??.

• wagonSim, presented in Chapter ??.

22.3.4 Playgrounds

Another element of the MATSim repository is the “playgrounds”. These are meant as a service to pro-
grammers. They have grown historically from the fact that MATSim’s object classes and in consequence
the interfaces between them have evolved and grown over time, and thus a stable API was not available.
Regular code-wide refactorings, along the lines discussed, e.g., by Fowler (2004), were thus the norm
for many years.

April 25, 2024 176

Chapter 22. Organization: Development Process, Code Structure and Contributing to MATSim22.4. Drivers, Organization and Tools of Development

At this point, the extension points described in Chapter 21 should be somewhat stable and development
against them should be possible without major changes from release to release. Anybody who needs
tighter integration with the project should still apply for a playground.

22.3.5 Contributions and Extensions

Congruent with the structure of this book, the MATSim code structure contains a core which allows to
run basic MATSim using the config file, a population and a network. Packages going beyond this basic
functionality are extensions, where three different kind of extensions exist:

• extensions in the main distribution,4

• extensions contributed by the MATSim community known as contributions, and

• any code written anywhere published or unpublished extending the MATSim core.

Extensions are listed at http://matsim.org/extensions.

22.3.6 Releases, Nightly Builds and Code HEAD

Releases, nightly builds and the code head can be obtained from http://matsim.org/downloads.

MATSim releases are published approximately annually. Usually, MATSim users and MATSim power users
as defined above in Section 22.2 work with releases.

MATSim uses continuous integration and, thus, nightly builds are available without stability guarantee
under http://matsim.org/downloads/nightly. MATSim API developers that depend on a very recent
feature might use Nightly builds.

Both Maven releases and Maven snapshots are available, see http://matsim.org/downloads for details.

MATSim API developers or core developers often work on the code’s HEAD version that can be checked
out from GitHub.

Nightly builds and maven snapshots are only generated when the code compiles and passes the re-
gression tests. They are, in consequence, somewhat “safer” than the direct download from the HEAD.

22.4 Drivers, Organization and Tools of Development

Important drivers of the MATSim development are the projects and dissertations of the MATSim team.
New features are developed as an answer to requirements of these dissertations and projects, where
projects range from purely scientific ones—often sponsored by Schweizerischer Nationalfonds (SNF)
or Deutsche Forschungsgemeinschaft (DFG)—via projects for governmental entities and projects where
science and industry contribute equally—e.g., Commission for Technology and Innovation (CTI) projects—
to purely commercial projects, which are managed by Senozon AG in the majority of cases. A significant
number of innovations are also introduced by the collaboration with external researchers.

Systematic code integration is mainly performed by the Berlin group and by Senozon AG and Simunto
GmbH. This includes continuous code review and integration upon request of the community, but also
comprehensive code refactorings to clean up code and to improve modularity. Refactorings are discussed
and documented in the MATSim issue tracker (http://matsim.org/issuetracker).

The development process is supported by a MATSim standing committee discussing software and some-
times conceptual issues on a regular basis (http://matsim.org/committee). Another element that brings
in innovation as well as organization are the annual meetings. Right from the beginning, there have

4At the time of writing it is unclear if these extensions might one day become contributions, shrinking the MATSim main
distribution to its core.

April 25, 2024 177

http://matsim.org/extensions
http://matsim.org/downloads
http://matsim.org/downloads/nightly
http://matsim.org/downloads
http://matsim.org/issuetracker
http://matsim.org/committee

Chapter 22. Organization: Development Process, Code Structure and Contributing to MATSim22.5. Documentation, Dissemination and Support

been a MATSim developer meetings focused on coding issues. Later, a user meeting offering insights
into current work by the community has been added, sometimes combined with a tutorial. Finally,
a conceptual meeting is now held every year, concentrating on issues that go beyond pure software
engineering. The developer meeting and the conceptual meeting together establish the road map that
guides development for the remainder of the year.

MATSim development makes use of a large number of tools, hopefully leading to better software quality.
Historically, many of those tools ran from automated scripts and were made available at http://matsim.
org/developer. Nowadays, most of them are automatically available from the build server (see http://

matsim.org/buildserver) and/or from the repository (https://github.com/matsim-org/matsim-libs),
so that many of them are scheduled for removal from http://matsim.org/developer. Some of these
tools are: a change log; an issue tracker; the javadoc documentation; static code analyses performed by
FindBugs and PMD; test code coverage analysis; copy paste analysis; code metrics; Maven dependencies;
and information about the nightly test results. These nightly test results are generated by the MATSim
build server based on the Jenkins software.

Furthermore, there is a MATSim benchmark at http://matsim.org/files/benchmark/benchmark.zip. For
results see http://matsim.org/benchmark.

Most MATSim developers use Eclipse as an IDE. The MATSim documentation is tailored to this IDE. Team
development is currently based on Git as revision control system. External library dependencies are
managed by Maven.

22.5 Documentation, Dissemination and Support

The main documentation is now this book. Additional information, including tutorials, can be found
under http://matsim.org/docs. Code documentation in form of javadoc can be found unter http:

//matsim.org/javadoc.

For fast application of MATSim, some small-scale example scenarios are provided in the code base
(folder: examples), where recently an extended version of the well-known benchmark scenario for the
City of Sioux Falls has been added (Chakirov and Fourie, 2014) (Chapter ??). Additional example datasets,
including Berlin datasets, can be obtained via http://matsim.org/datasets.

Further information is disseminated at the afore-described annual user meetings and MATSim mailing
lists, see http://matsim.org/mailinglists. Support is provided by the MATSim team via these mailing
lists and via http://matsim.org/faq, both on a best effort basis. Many components of MATSim are
documented by the numerous papers published in international journals and presented at worldwide
conferences. Information about such publications can, e.g., be obtained from http://matsim.org/

publications and from this book.

22.6 Your Contribution to MATSim

The technical details, i.e., the MATSim extension points, on where to hook with MATSim are detailed
in Chapter 21. Here, the different ways of contributing to MATSim according to the roles presented in
Section 22.2 are introduced.

As a MATSim user, power user, or API developer, you are warmly welcome to make an important impact
by reporting your achievements, needs and problems with, or bugs of, the software via the users mailing
list, the issue tracker, the FAQ, or at the annual MATSim user meeting.

If you would like to directly contribute to the code base of MATSim, you are welcome to become part of
the contributions repository.

April 25, 2024 178

http://matsim.org/developer
http://matsim.org/developer
http://matsim.org/buildserver
http://matsim.org/buildserver
https://github.com/matsim-org/matsim-libs
http://matsim.org/developer
http://matsim.org/files/benchmark/benchmark.zip
http://matsim.org/benchmark
http://matsim.org/docs
http://matsim.org/javadoc
http://matsim.org/javadoc
http://matsim.org/datasets
http://matsim.org/mailinglists
http://matsim.org/faq
http://matsim.org/publications
http://matsim.org/publications

Chapter 22. Organization: Development Process, Code Structure and Contributing to MATSim22.6. Your Contribution to MATSim

If you are the type of person that likes to change the core system, you can, although it is a long way,
become a member of the MATSim core developers group. Core developers are usually picked from the
MATSim team. Prerequisites are a strong computer scientist background, several years of experience
with MATSim and a deep understanding of large software projects.

April 25, 2024 179

Agent-Based Traffic Assignment

181

Choice Models in MATSim

182

Queueing Representation of Kinematic
Waves

183

Research Avenues

Choice Set Generation

184

Acronyms

AI Artificial Intelligence. 98

API Application Programming Interface. 9, 27, 63, 64, 159, 168, 174, 176–178, 185

ARTEMIS Assessment and Reliability of Transport Emission Models and Inventory Systems, a harmonized
emission model in the European Union (EU), possibly a predecessor of HBEFA, version 3.1. 124

BVG Berliner Verkehrsbetriebe (started as Berliner Verkehrsaktien-Gesellschaft). 146

CAS Complex Adaptive Systems. 3

CSV Comma-Separated Values. 53, 112

CTI Commission for Technology and Innovation. 177

CUDA Compute Unified Device Architecture, a parallel computing platform and API by NVIDIA. 168

DEQSim Discrete Event Queue Simulation. 6, 7, 37

DFG Deutsche Forschungsgemeinschaft. 177

DRT Demand Responsive Transport. 143

DTD Document Type Description. 68, 81

DVRP Dynamic Vehicle Routing Problem. 136–138, 141–143

EMME Equilibre Multimodal Multimodal Equilibrium. See http://www.inrosoftware.com/en/products/

emme/. 28, 69

EMT Emission Modeling Tool developed by Hülsmann et al. (2011) and Kickhöfer et al. (2013), see
Chapter 15. 123, 124, 126

EPSG European Petroleum Survey Group. 21

ESRI Environmental Systems Research Institute. 49

ETH Eidgenössische Technische Hochschule. 45, 171

EU European Union. 185

FCL Future Cities Laboratory. 171

FIFO First In, First Out. 87, 142

185

http://www.inrosoftware.com/en/products/emme/
http://www.inrosoftware.com/en/products/emme/

Acronyms Acronyms

GIS Geographic Information System. 21, 113

GPLv2 GNU General Public License version 2.0. 172

GPS Global Positioning System. 19, 20, 49

GTFS General Transit Feed Specification. 95

GUI Graphical User Interface. 10, 12, 22, 26

HBEFA Handbook on Emission Factors for Road Transport, version 3.1. See http://www.hbefa.net. 123–
127, 185

HPCC High-Performance Computing Clusters. 35

ICT Information and Communications Technology. 135

IDE Integrated Development Environment. 10, 27, 33, 178

ILS Institut für Land- und Seeverkehr – Institute for Land and Sea Transport Systems. 171

IVT Institut für Verkehrsplanung und Transportsysteme – Institute for Transport Planning and Systems.
171

JAR Java ARchive. 10

Java SE Java Standard Edition. 9

JAXB Java Architecture for XML Binding. 175

JDEQSim Java Discrete Event Queue Simulation. 6, 7, 35, 37

JOGL Java OpenGL. 63

JOSM Java Open Street Map Editor. 25

JSON JavaScript Object Notation. 116

MATSim Multi-Agent Transport Simulation. See http://www.matsim.org. 3–7, 9–23, 25–29, 33–40, 44, 45,
47, 49, 52, 55, 57–59, 63, 68, 69, 74, 76–80, 84, 85, 87–91, 94, 95, 97, 98, 101, 102, 105–107, 109,
121, 123–127, 136, 138–141, 145, 146, 149–152, 154, 155, 158, 159, 161–166, 168–172, 174–179, 189

MIMOSA Modélisation Isentrope du transport Méso-échelle de l’Ozone Stratosphérique par Advection.
124

MNL Multinomial Logit Model. 40, 153

mobsim Mobility simulation. Also, depending on the context and specific mobility simulation capabil-
ities, called network loading, traffic flow simulation or synthetic reality. 5, 6, 12, 14, 16, 18, 22,
34–36, 58–62, 64, 65, 102, 106, 154, 159–163, 167–169, 175, 190

MOVES Motor Vehicle Emission Simulator. See http://www.epa.gov/otaq/models/moves/. 124

MSA Method of Successive Averages. See, e.g., Liu et al. (2007). 41, 106

MVI OTFVis Movie File, not to be confused with the “Musical Video Interactive” file usually abbreviated
mvi. 57–63

O-D Origin-Destination. 49, 167

OpenGL Open Graphics Library. 63, 64

April 25, 2024 186

http://www.hbefa.net
http://www.matsim.org
http://www.epa.gov/otaq/models/moves/

Acronyms Acronyms

OS Operating System. 59, 63

OSM OpenStreetMap (OpenStreetMap, 2015). 19, 45, 69, 77, 190

OTFVis On The Fly Visualizer. 10, 14, 27, 57–65

PCU Passenger Car Unit. 94

PhD Philosophiae Doctor – Doctor of Philosophy. 171, 172

PHEM Passenger Car and Heavy-duty Emission Model. 124

PT Public Transport. 91, 94, 95

QGIS Quantum GIS. 21, 28

RAM Random Access Memory. 59

Scala SCAlable LAnguage. See http://www.scala-lang.org/. 28

SI Système International (d’Unités): International System (of Units). 75

SNF Schweizerischer Nationalfonds. 177

SPI Service Provider Interface. 161

SUMO Simulation of Urban Mobility. See http://www.dlr.de/ts/sumo/en/. 28

TRANSIMS TRansportation ANalysis and SIMulation System. See https://code.google.com/archive/p/

transims/. 3

TU Technische Universität. 28, 171

URL Uniform Resource Locator. 22

UTM Universal Transverse Mercator. 19, 21

VISSIM Verkehr In Städten – SImulationsModell. See http://www.ptv.de. 124

VISUM Verkehr In Städten – UMlegung. See http://www.ptv.de. 28, 69, 90, 175

VPL VerkehrsPLanung. See http://www.ivt.ethz.ch/vpl/. 171

VRP Vehicle Routing Problem. 136, 137

VSP VerkehrsSystemPlanung und Verkehrstelematik – The Transport Systems Planning and Transport
Telematics group at TU Berlin. See https://www.vsp.tu-berlin.de. 171

VTTS Value of Travel Time Savings. 102, 104

WKT Well-Known Text. 21

XML Extensible Markup Language, see http://www.w3.org/XML/. 15, 33, 68, 74, 76, 116, 126, 169, 175

YAML Yet Another Markup Language. 54

April 25, 2024 187

http://www.scala-lang.org/
http://www.dlr.de/ts/sumo/en/
https://code.google.com/archive/p/transims/
https://code.google.com/archive/p/transims/
http://www.ptv.de
http://www.ptv.de
http://www.ivt.ethz.ch/vpl/
https://www.vsp.tu-berlin.de
http://www.w3.org/XML/

Glossary

MATSim example project
The github project at https://github.com/matsim-org/matsim-example-project that is meant
to be forked/cloned, and used as a starting point for using or extending MATSim.. 170

Activity The central element of modern activity-based modeling (see below). 4, 48, 191

Activity location People perform activities at activity locations, which can be as small as one single
building or large zones. In MATSim, activity locations are often further specified by using the
facility object, which (in addition to others) define open times. 190

Activity-based Modern transport planning assumes that “travel demand is derived from activity de-
mand” (Jones, 1979; Bowman, 2009a,b; Bhat and Koppelman, 2003; Ettema and Timmermans,
1997; Bowman and Ben-Akiva, 1996, 2001). People travel because they want to perform a certain
activity, which is best captured by activity-based models with activities the central element of
modeling. 4

Algorithm A set of operations to solve a specific problem. 7, 105

C++ An object-oriented programming language with full control of memory management. 6

command line A method to give input to computers.. 12, 93

Configuration file The main configuration screw for MATSim, often just referred to as config file or as
config.xml. Also see config. 10–15, 17, 21–23, 26, 33–41, 58–60, 75–78, 80, 87, 94, 169, 174, 177,
189

Configuration object The object in the MATSim code containing configuration options. It can be modified
by the config file, but also by other mains, in particular by scripts-in-Java. 11, 21, 33, 35, 38, 53,
108, 160, 164, 189

Contribution An extension contributed by the MATSim community and hosted in the MATSim repository.
See http://matsim.org/extensions.. 27, 58, 121, 136, 175, 177, 178

Eclipse The standard integrated development environment (IDE) used by the MATSim developers. 10,
178

Equilibrium A system state where are competing forces are balanced. 7, 8

Event Small pieces of information reported by the mobsim, describing a simulation object action at a
specific time. 18, 160, 162, 163, 167–169

Extension Core MATSim uses only a config file, population file and network file, corresponding to the
book’s part I. An extension is any code that extends this core MATSim, corresponding to this

189

https://github.com/matsim-org/matsim-example-project
http://matsim.org/extensions

Glossary Glossary

book’s part II. They hook to MATSim via the extension points described in Chapter 21. 27, 161,
170, 174, 177, 189

Facility An optional element in MATSim to further specify an activity location. 48, 77, 189

Framework A software concept, providing generic functionality and application-specific software. It is
selectively changed by user code. MATSim is currently a framework, but is developing towards
also being useful as a library/toolbox. 4, 167, 168

Git A free and open source distributed version control system. 174, 178

GitHub A web-based Git repository hosting service, see https://github.com/. 10, 174, 175, 177

Google Earth Google’s virtual globe. 21

Identifier A name that labels an object in a unique way. 20, 83, 85, 161

Iteration Numerical equilibrium search methods, such as MATSim, are iterative. A MATSim run is thus
composed of a configurable number of iterations. 17, 190

Java A modern, object-oriented, cross-platform programming language run in virtual machines. 4, 10,
26–28, 35, 37, 45, 58, 63, 68, 74, 86, 94, 161, 165, 168–170, 174, 175, 189, 190

Javadoc Source code documentation compiled from javadoc annotations in the source files. 158, 178

Jenkins A software tool for continuous integration. 178

Large-scale Denoting large, extended simulation scenarios, often modeling complete cities, or even
countries. 3

Leg A plan element, part of a trip performed with a specific mode. In transport planning, this is often
called a stage. 16, 167, 191

Link A network component representing streets. 15

MATSim run A configurable number set of iterations, typically ending with an equilibrium solution of
transport supply and demand. 4, 10, 17, 34, 169, 190

Maven A build automation tool by Apache tailored to Java. 10, 26, 27, 121, 159, 170, 174, 177, 178

Module According to Merriam-Webster (http://www.merriam-webster.com), a module is “one of a set
of parts that can be connected or combined to build or complete something” or more specifically
“a part of a computer or computer program that does a particular job”. That is, “module” is not
a very specific term, and, in consequence, modules exist in MATSim at many levels. 47, 77

Multimodal Combining different means of transport. 28, 36, 88, 89, 145

Node An element of a MATSim network representing intersections. Note that intersections are not
modeled explicitly in MATSim, i.e., cars do not interact at intersections. 15

Objective function A central element in optimization problems, among others. An objective function,
sometimes also called loss or cost function, is mapping of candidate solutions onto a real number.
149, 150, 191

Osmosis Command line Java application for processing OSM data. See http://wiki.openstreetmap.

org/wiki/Osmosis. 69

April 25, 2024 190

https://github.com/
http://www.merriam-webster.com
http://wiki.openstreetmap.org/wiki/Osmosis
http://wiki.openstreetmap.org/wiki/Osmosis

Glossary Glossary

Plan The agent’s day schedule and, after run completion, an associated score. 4, 16, 82, 162

QSim The standard MATSim mobsim. 6, 7, 14, 34–37, 79, 82–87, 90, 160

Replanning The stage when agents modify their plans. 5, 12, 16, 38, 159, 162, 169

Scenario In MATSim context, a scenario is defined as: the combination of specific agent populations,
their initial plans and activity locations (home, work, education), the network and facilities where,
and on which, they compete in time-space for their slots and modules, i.e., behavioral dimensions,
which they can adjust during their search for equilibrium. 6, 9, 12, 160, 168

Score After execution in the infrastructure, the agents’ day plans are evaluated through an individual
objective function, the MATSim scoring function. Also see utility. 4, 98, 169, 190

Scoring see score. 37, 169

Senozon AG A spin-off company founded by two core developers of MATSim. 45, 171, 177

Simunto GmbH A company founded by a core developer of MATSim. 44, 45, 172, 173, 177, 191

SimWrapper An open-source web-based data visualization platform. 52, 54, 55, 120

Stage A stage is part of a trip, performed with a single mode. In MATSim called leg. 190

Study The basic organizational unit of research in empirical science. Comparable to the experiment in
natural sciences. 4

Teleportation Moving vehicles from origin to destination, at a predefined speed, without considering
interactions in the network. 16, 82, 85, 88, 89

Teleported see teleportation. 89

Trip The connection between two activities, composed of multiple legs. 18, 190

Utility A central economic concept representing satisfaction through goods consumption. The MATSim
score can be interpreted in utility units. 98, 191

Via Visualization and analysis tool for MATSim by Simunto GmbH. 10, 14, 25, 175

April 25, 2024 191

Bibliography Bibliography

Bibliography

Agarwal, A., M. Zilske, K. Rao and K. Nagel (2015) An elegant and computationally efficient approach
for heterogeneous traffic modelling using agent based simulation, Procedia Computer Science, 52 (C)
962–967, doi:10.1016/j.procs.2015.05.173.

Ahn, K. and H. Rakha (2008) The effects of route choice decisions on vehicle energy consumption and
emissions, Transportation Research Part D: Transport and Environment, 13 (3) 151–167.

André, M. and M. Rapone (2009) Analysis and modelling of the pollutant emissions from European cars
regarding the driving characteristics and test cycles, Atmospheric Environment, 43 (5) 986–995.

Arnott, R., A. de Palma and R. Lindsey (1990) Economics of a bottleneck, Journal of Urban Economics,
27 (1) 111–130, doi:10.1016/0094-1190(90)90028-L.

Arnott, R., A. de Palma and R. Lindsey (1993) A structural model of peak-period congestion: A traffic
bottleneck with elastic demand, The American Economic Review, 83 (1) 161–179.

ASTRA (2006) Swiss federal roads authority, webpage, http://www.astra.admin.ch/.

Axhausen, K. W. (2006) Neue Modellansätze der Verkehrsnachfragesimulation: Entwicklungslinien, Stand
der Forschung, Forschungsperspektiven, Stadt Region Land, 81, 149–164.

Baker, J., D. Grewel and A. Parasuraman (1994) The influence of store environment on quality inferences
and store image, Journal of the Academy of Marketing Science, 22 (4) 328–339.

Balmer, M., A. Horni, K. Meister, F. Ciari, D. Charypar and K. W. Axhausen (2009) Wirkungen der Westum-
fahrung Zürich: Eine Analyse mit einer Agenten-basierten Mikrosimulation, Final Report, Baudirektion
Kanton Zurich, IVT, ETH Zurich, Zurich, February 2009.

Balmer, M., K. Meister, R. A. Waraich, A. Horni, F. Ciari and K. W. Axhausen (2010) Agenten-basierte
Simulation für location based services, Final Report, F&E Förderung: Science to Market, KTI 8443.1
ESPP-ES, Datapuls AG, IVT, ETH Zurich, Zurich, February 2010.

Balmer, M., B. Raney and K. Nagel (2005) Adjustment of activity timing and duration in an agent-based
traffic flow simulation, in: H. Timmermans (ed.) Progress in activity-based analysis, 91–114, Elsevier,
Oxford.

Barcelo, J., H. Grzybowska and S. Pardo (2007) Vehicle routing and scheduling models, simulation and
city logistics, 163–195, Springer, NY.

Beckx, C., T. A. Arentze, L. Int Panis, D. Janssens, J. Vankerkorn and G. Wets (2009) An integrated activity-
based modelling framework to assess vehicle emissions: Approach and application, Environment and
Planning B, 36 (6) 1086–1102.

Ben-Akiva, M. E. and B. Boccara (1995) Discrete choice models with latent choice sets, International
Journal of Research in Marketing, 12 (1) 9–24.

Ben-Akiva, M. E. and S. R. Lerman (1985) Discrete Choice Analysis: Theory and Application to Travel
Demand, MIT Press, Cambridge.

Bhat, C. R. and F. S. Koppelman (2003) Activity-based modeling of travel demand, in: R. W. Hall (ed.)
Handbook of Transportation Science, 39–65, Springer, New York.

Bowman, J. L. (2009a) Historical development of activity based model theory and practice (part 1), Traffic
Engineering and Control, 50 (2) 59–62.

Bowman, J. L. (2009b) Historical development of activity based model theory and practice (part 2), Traffic
Engineering and Control, 50 (7) 314–318.

Bowman, J. L. and M. E. Ben-Akiva (1996) Activity-based travel forecasting, in: Activity-Based Travel
Forecasting Conference, New Orleans, June 1996.

Bowman, J. L. and M. E. Ben-Akiva (2001) Activity-based disaggregate travel demand model system with
activity schedules, Transportation Research Part A: Policy and Practice, 35 (1) 1–28.

April 25, 2024 193

http://dx.doi.org/10.1016/j.procs.2015.05.173
http://dx.doi.org/10.1016/0094-1190(90)90028-L
http://www.astra.admin.ch/

Bibliography Bibliography

Burnett, K. P. (1980) Spatial constraints-oriented modelling as an alternative approach to movement:
Microeconomic theory and urban policy, Urban Geography, 1 (1) 53–67.

Burnett, K. P. and S. Hanson (1979) Rationale for an alternative mathematical approach to movement as
complex behavior, Transportation Research Record, 723, 11–24.

Certicky, M., M. Jakob, R. Pibil and Z. Moler (2014) Agent-based simulation testbed for on-demand
transport services, in: 2014 International Conference on Autonomous Agents and Multi-agent Systems,
AAMAS ’14, 1671–1672, Richland, SC.

Cetin, N. (2005) Large-scale parallel graph-based simulations, Ph.D. Thesis, ETH Zurich, Zurich.

Cetin, N., A. Burri and K. Nagel (2003) A large-scale agent-based traffic microsimulation based on queue
model, in: Swiss Transport Research Conference (STRC), Monte Verita. See http://www.strc.ch.

Chakirov, A. and P. J. Fourie (2014) Enriched Sioux Falls Scenario with Dynamic and Disaggregate Demand,
Working Paper, Future Cities Laboratory, Singapore-ETH Centre (SEC), Singapore.

Charlton, W. and B. Sana (2022) Simwrapper, an open source web-based platform for interactive vi-
sualization of microsimulation outputs and transport data (submitted version), Procedia Computer
Science. The 14th International Conference on Ambient Systems, Networks and Technologies (AN-
T/ABMTRANS) / Affiliated Workshops.

Charypar, D. (2008) Efficient algorithms for the microsimualtion of travel behavior in very large scenarios,
Ph.D. Thesis, ETH Zurich, Zurich.

Charypar, D., K. Axhausen and K. Nagel (2007a) An event-driven parallel queue-based microsimulation
for large scale traffic scenarios, in: World Conference on Transport Research (WCTR’07), Berkeley, CA.
Also VSP WP 07-03 http://vsp.berlin/publications.

Charypar, D., K. Axhausen and K. Nagel (2007b) Event-driven queue-based traffic flow microsimulation,
Transportation Research Record, 2003, 35–40, doi:10.3141/2003-05.

Charypar, D., M. Balmer and K. W. Axhausen (2009) High-performance traffic flow microsimulation for
large problems, in: 88th Annual Meeting of the Transportation Research Board, Washington, D.C.,
January 2009.

Charypar, D. and K. Nagel (2005) Generating complete all-day activity plans with genetic algorithms,
Transportation, 32 (4) 369–397, doi:10.1007/s11116-004-8287-y.

Ciari, F., M. Balmer and K. W. Axhausen (2007) Mobility tool ownership and mode choice decision pro-
cesses in multi-agent transportation simulation, in: 7th Swiss Transport Research Conference, Ascona,
September 2007.

Ciari, F., M. Balmer and K. W. Axhausen (2008) A new mode choice model for a multi-agent transport
simulation, in: 8th Swiss Transport Research Conference, Ascona, October 2008.

Creutzig, F. and D. He (2009) Climate change mitigation and co-benefits of feasible transport demand
policies in Beijing, Transportation Research Part D: Transport and Environment, 14 (2) 120–131.

Dijkstra, E. W. (1959) A note on two problems in connexion with graphs, Numerische Mathematik, 1,
269–271.

Dobler, C. (2009) Implementations of within day replanning in MATSim-T, Working Paper, 598, IVT, ETH
Zurich, Zurich.

Dobler, C. (2010) Implementation of a time step based parallel queue simulation in MATSim, in: 10th
Swiss Transport Research Conference, Ascona, September 2010.

Dobler, C. (2013) Travel behaviour modelling for scenarios with exceptional events - methods and im-
plementations, Ph.D. Thesis, ETH Zurich, Zurich.

Dobler, C. and K. W. Axhausen (2011) Design and implementation of a parallel queue-based traffic flow
simulation, Working Paper, 732, IVT, ETH Zurich, Zurich.

Eiben, A. E. and J. E. Smith (eds.) (2003) Introduction to Evolutionary Computing, Springer, Berlin.

April 25, 2024 194

http://www.strc.ch
http://vsp.berlin/publications
http://dx.doi.org/10.3141/2003-05
http://dx.doi.org/10.1007/s11116-004-8287-y

Bibliography Bibliography

Eroglu, S. and G. D. Harrell (1986) Retail crowding: Theoretical and strategic implications, Journal of
Retailing, 62 (4) 346–363.

Eroglu, S. and K. A. Machleit (1990) An empirical study of retail crowding: Antecedents and consequences,
Journal of Retailing, 66 (2) 201–221.

Eroglu, S., K. A. Machleit and T. Feldman Barr (2005) Perceived retail crowding and shopping satisfaction:
The role of shopping values, Journal of Business Research, 58 (8) 1146–1153.

Ettema, D. F. and H. J. P. Timmermans (eds.) (1997) Activity-Based Approaches to Travel Analysis, Perg-
amon, Oxford.

FHWA (2013) TRANSIMS Background, webpage, http://www.fhwa.dot.gov/planning/tmip/resources/

transims/.

Fowler, M. (2004) Refactoring: Improving the design of existing code, Addison-Wesley.

Frejinger, E. and M. Bierlaire (2007) Capturing correlation with subnetworks in route choice models,
Transportation Research Part B: Methodological, 41 (3) 363–378.

Frejinger, E., M. Bierlaire and M. E. Ben-Akiva (2009) Sampling of alternatives for route choice modeling,
Transportation Research Part B: Methodological, 43 (10) 984–994.

Gawron, C. (1998) An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation
model, International Journal of Modern Physics C, 9 (3) 393–408.

Geotools (accessed 2015) The open source Java GIS toolkit, webpage. http://www.geotools.org.

GitHub (2015) Web-based git repository hosting service, webpage, https://github.com.

Grether, D., Y. Chen, M. Rieser and K. Nagel (2009) Effects of a simple mode choice model in
a large-scale agent-based transport simulation, in: A. Reggiani and P. Nijkamp (eds.) Complex-
ity and Spatial Networks. In Search of Simplicity, Advances in Spatial Science, 167–186, Springer,
doi:10.1007/978-3-642-01554-0.

Grether, D., A. Neumann and K. Nagel (2011) Traffic light control in multi-agent transport simulations,
VSP Working Paper, 11-08, TU Berlin, Transport Systems Planning and Transport Telematics, Berlin. URL
http://vsp.berlin/publications.

Grether, D., A. Neumann and K. Nagel (2012) Simulation of urban traffic control: A queue model approach,
Procedia Computer Science, 10, 808–814, doi:10.1016/j.procs.2012.06.104.

Guo, J. Y. and C. R. Bhat (2007) Population synthesis for microsimulating travel behavior, Transportation
Research Record, 2014 (12) 92–101.

Harrell, G. D., M. D. Hutt and J. C. Anderson (1980) Path analysis of buyer behavior under conditions of
crowding, Journal of Marketing Research, 17 (1) 45–51.

Hatzopoulou, M. and E. J. Miller (2010) Linking an activity-based travel demand model with traffic
emission and dispersion models: Transport’s contribution to air pollution in Toronto, Transportation
Research Part D: Transport and Environment, 15 (6) 315–325.

Hirschmann, K., M. Zallinger, M. Fellendorf and S. Hausberger (2010) A new method to calculate emissions
with simulated traffic conditions, in: Intelligent Transportation Systems Conference (ITSC), Madeira,
September 2010.

Horni, A. (2013) Destination choice modeling of discretionary activities in transport microsimulations,
Ph.D. Thesis, ETH Zurich, Zurich.

Horni, A. (2016) MATSim destination choice documentation, webpage, http://matsim.org/docs/

extensions/destination-choice.

Horni, A. and K. W. Axhausen (2012) MATSim agent heterogeneity and week scenario, Working Paper,
836, IVT, ETH Zurich, Zurich.

April 25, 2024 195

http://www.fhwa.dot.gov/planning/tmip/resources/transims/
http://www.fhwa.dot.gov/planning/tmip/resources/transims/
http://www.geotools.org
https://github.com
http://dx.doi.org/10.1007/978-3-642-01554-0
http://vsp.berlin/publications
http://dx.doi.org/10.1016/j.procs.2012.06.104
http://matsim.org/docs/extensions/destination-choice
http://matsim.org/docs/extensions/destination-choice

Bibliography Bibliography

Horni, A., D. Charypar and K. W. Axhausen (2011a) Variability in transport microsimulations investigated
with the multi-agent transport simulation MATSim, Working Paper, 692, IVT, ETH Zurich, Zurich.

Horni, A., F. Ciari and K. W. Axhausen (2012a) Coupling customers’ destination choice and retailers’
location choice in MATSim, Working Paper, 808, IVT, ETH Zurich, Zurich.

Horni, A. and D. Grether (2007) Counts, internal presentation, MATSim-T Workshop, IVT, ETH Zurich,
Castasegna, October 2007.

Horni, A., L. Montini and K. W. Axhausen (2013) An Agent-Based Cellular Automaton Cruising-For-Parking
Simulation, IATBR Special Issue of Transportation Letters.

Horni, A., K. Nagel and K. W. Axhausen (2012b) High-resolution destination choice in agent-based models,
Annual Meeting Preprint, 12-1988, Transportation Research Board, Washington, D.C. Also VSP WP 11-17
http://vsp.berlin/publications.

Horni, A., D. M. Scott, M. Balmer and K. W. Axhausen (2009) Location choice modeling for shopping
and leisure activities with MATSim: Combining micro-simulation and time geography, Transportation
Research Record, 2135, 87–95.

Horni, A., B. J. Vitins and K. W. Axhausen (2011b) The Zurich scenario: A technical overview, Working
Paper, 687, IVT, ETH Zurich, Zurich.

Hui, M. K. and J. E. G. Bateson (1991) Perceived control and the effects of crowding and consumer choice
on the service experience, Journal of Consumer Research, 18 (2) 174–184.

Hülsmann, F., R. Gerike, B. Kickhöfer, K. Nagel and R. Luz (2011) Towards a multi-agent based modeling
approach for air pollutants in urban regions, in: Conference on “Luftqualität an Straßen”, 144–166.
Also VSP WP 10-15 http://vsp.berlin/publications.

Hülsmann, F., B. Kickhöfer and R. Gerike (2013) Air pollution hotspots in urban areas – how effective are
pricing strategies to comply with the EU limits for NO2?, in: R. Gerike, K. Roller and F. Hülsmann (eds.)
Strategies for Sustainable Mobilities: Opportunities and Challenges, 105–128, Ashgate Publishing Ltd.

Hörl, S. and M. Balac (2021) Introducing the eqasim pipeline: From raw data to agent-based transport
simulation, Procedia Computer Science, 184, 712–719, doi:10.1016/j.procs.2021.03.089. ABMTRANS
’21.

Jacob, R. R., M. V. Marathe and K. Nagel (1999) A computational study of routing algorithms for realistic
transportation networks, ACM Journal of Experimental Algorithms, 4 (1999es, Article No. 6), doi:10.
1145/347792.347814.

Jones, P. M. (1979) New approaches to understand travel behaviour: the human activity approach, in:
D. A. Hensher and P. R. Stopher (eds.) Behavioural Travel Modelling, 55–80, Croom Helm Ltd, Kent.

Kaddoura, I., L. Kröger and K. Nagel (2017) An activity-based and dynamic approach to calculate road
traffic noise damages, Transportation Research Part D: Transport and Environment, 54, 335–347,
doi:10.1016/j.trd.2017.06.005.

Kickhöfer, B., F. H. Hülsmann, R. Gerike and K. Nagel (2013) Rising car user costs: Comparing aggregated
and geo-spatial impacts on travel demand and air pollutant emissions, in: T. Vanoutrive and A. Verhet-
sel (eds.) Smart Transport Networks: Decision Making, Sustainability and Market structure, NECTAR
Series on Transportation and Communications Networks Research, 180–207, Edward Elgar Publishing
Ltd, Cheltenham.

Kickhöfer, B. and J. Kern (2015) Pricing local emission exposure of road traffic: An agent-based approach,
Transportation Research Part D: Transport and Environment, 37 (1) 14–28, doi:10.1016/j.trd.2015.
04.019.

Kickhöfer, B. and K. Nagel (2011) Mapping emissions to individuals – new insights with multi-agent
transport simulations, in: 12th Conference on Computers in Urban Planning and Urban Management
(CUPUM), Lake Louise, Canada. Also VSP WP 11-02 http://vsp.berlin/publications.

April 25, 2024 196

http://vsp.berlin/publications
http://vsp.berlin/publications
http://dx.doi.org/10.1016/j.procs.2021.03.089
http://dx.doi.org/10.1145/347792.347814
http://dx.doi.org/10.1145/347792.347814
http://dx.doi.org/10.1016/j.trd.2017.06.005
http://dx.doi.org/10.1016/j.trd.2015.04.019
http://dx.doi.org/10.1016/j.trd.2015.04.019
http://vsp.berlin/publications

Bibliography Bibliography

Kickhöfer, B. and K. Nagel (2016) Towards high-resolution first-best air pollution tolls, Networks and
Spatial Economics, 16 (1) 175–198, doi:10.1007/s11067-013-9204-8.

Kickhöfer, B. (2014) Economic policy appraisal and heterogeneous users, Ph.D. Thesis, doi:10.14279/
depositonce-4089.

Knight, F. H. (1924) Some fallacies in the interpretation of social cost, Quarterly Journal of Economics,
38 (4) 582–606.

Kraschl-Hirschmann, K., M. Zallinger, R. Luz, M. Fellendorf and S. Hausberger (2011) A method for emis-
sion estimation for microscopic traffic flow simulation, in: IEEE Forum on Integrated and Sustainable
Transportation Systems, Vienna, June 2011.

Lämmel, G., D. Grether and K. Nagel (2010) The representation and implementation of time-dependent in-
undation in large-scale microscopic evacuation simulations, Transportation Research Part C: Emerging
Technologies, 18 (1) 84–98, doi:10.1016/j.trc.2009.04.020.

Lefebvre, N. and M. Balmer (2007) Fast shortest path computation in time-dependent traffic networks,
presentation, The 7th Swiss Transport Research Conference (STRC), Ascona, September.

Liao, T.-Y., T.-Y. Hu and D.-J. Chen (2008) Object-oriented evaluation framework for dynamic vehicle routing
problems under real-time information, Annual Meeting Preprint, 08-2222, Transportation Research
Board, Washington, D.C.

Liu, H., X. He and B. He (2007) Method of successive weighted averages (MSWA) and self-regulated
averaging schemes for solving stochastic user equilibrium problem, Networks and Spatial Economics,
9 (4) 485–503.

Maciejewski, M. (2014) Online taxi dispatching via exact offline optimization, Logistyka, 3, 2133–2142.

Maciejewski, M. and K. Nagel (2012) Towards multi-agent simulation of the dynamic vehicle routing
problem in MATSim, in: R. Wyrzykowski et al (ed.) Parallel Processing and Applied Mathematics
(PPAM), Revised Selected Papers, Part II, Lecture Notes in Computer Science, Springer, Berlin, doi:10.
1007/978-3-642-31500-8_57.

Maciejewski, M. and K. Nagel (2013a) A microscopic simulation approach for optimization of taxi services,
in: T. Albrecht, B. Jaekel and M. Lehnert (eds.) 3rd International Conference on Models and Technologies
for Intelligent Transportation Systems 2013, 1–10, TUDpress. Also VSP WP 13-12 http://vsp.berlin/

publications.

Maciejewski, M. and K. Nagel (2013b) Simulation and dynamic optimization of taxi services in MATSim,
VSP Working Paper, 13-05, TU Berlin, Transport Systems Planning and Transport Telematics. URL http:

//vsp.berlin/publications.

Maciejewski, M. and K. Nagel (2014) The influence of multi-agent cooperation on the efficiency of taxi
dispatching, in: 10th International Conference Parallel Processing and Applied Mathematics (PPAM)
Part II, no. 8385 in: LNCS, Warsaw, Poland, doi:10.1007/978-3-642-55195-6_71.

Manski, C. F. (1977) The structure of random utility models, Theory and Decision, 8 (3) 229–254.

MATSim (2016) Multi-Agent Transportation Simulation, webpage, http://www.matsim.org.

Mayobre, M. (2018) Erweiterung einer Verkehrssimulationssoftware um ein Modell zur Berechnung von
Unfallkosten, Master’s thesis, TU Berlin, Institute for Land and Sea Transport Systems, Berlin.

Meister, K. (2008) Erstellung von MATSim Facilities für das Schweiz-Szenario, Working Paper, 541, IVT,
ETH Zurich.

Meister, K. (2011) Contribution to agent-based demand optimization in a multi-agent transport simula-
tion, Ph.D. Thesis, ETH Zurich, Zurich.

Meister, K., M. Balmer, F. Ciari, A. Horni, M. Rieser, R. A. Waraich and K. W. Axhausen (2010) Large-scale
agent-based travel demand optimization applied to Switzerland, including mode choice, in: 12th
World Conference on Transportation Research, Lisbon, July 2010.

April 25, 2024 197

http://dx.doi.org/10.1007/s11067-013-9204-8
http://dx.doi.org/10.14279/depositonce-4089
http://dx.doi.org/10.14279/depositonce-4089
http://dx.doi.org/10.1016/j.trc.2009.04.020
http://dx.doi.org/10.1007/978-3-642-31500-8_57
http://dx.doi.org/10.1007/978-3-642-31500-8_57
http://vsp.berlin/publications
http://vsp.berlin/publications
http://vsp.berlin/publications
http://vsp.berlin/publications
http://dx.doi.org/10.1007/978-3-642-55195-6_71
http://www.matsim.org

Bibliography Bibliography

Michalewicz, Z. and D. B. Fogel (2004) How to Solve It: Modern Heuristics, Springer, Heidelberg.

Michiels, H., I. Mayers, L. Int Pais, L. De Nocker, F. Deutsch and W. Lefebvre (2012) PM2.5 and NOx from
traffic — human health impacts, external costs and policy implications from the Belgian perspective,
Transportation Research Part D: Transport and Environment, 17 (8) 569–577.

Müller, K. (2011) IPF within multiple domains: Generating a synthetic population for Switzerland, in:
11th Swiss Transport Research Conference, Ascona, May 2011.

Neumann, A. (2008) Modellierung und Evaluation von Lichtsignalanlagen in Queue-Simulationen, Diplo-
marbeit (Diploma Thesis), TU Berlin, Institute for Land and Sea Transport Systems, Berlin. Also VSP
WP 08-24 http://vsp.berlin/publications.

Neumann, A. (2014) A paratransit-inspired evolutionary process for public transit network design, Ph.D.
Thesis, TU Berlin, Berlin.

Neumann, A., D. Röder and J. W. Joubert (2015) Towards a simulation of minibuses in South Africa,
Journal of Transport and Land Use, 8 (1) 137–154, doi:10.5198/jtlu.2015.390.

OpenStreetMap (2015) The Free Wiki World Map, webpage, http://www.openstreetmap.org.

Pagliara, F. and H. J. P. Timmermans (2009) Choice set generation in spatial contexts: A review, Trans-
portation Letters, 1 (1) 181–196.

Pawlak, J., A. Sivakumar and J. W. Polak (2011) The consequences of the productive use of travel time:
Revisiting the goods-leisure trade-off in the era of pervasive ICT, in: 2nd International Choice Modelling
Conference, Leeds, July 2011.

Pigou, A. C. (1920) The Economics of Welfare, Macmillan and Co., London.

Pons, F., M. Laroche and M. Mourali (2006) Consumer reactions to crowded retail settings: Cross-cultural
differences between North America and the Middle East, Psychology & Marketing, 23 (7) 555–572.

Popovici, E., R. P. Wiegand and E. D. De Jong (2012) Coevolutionary principles, in: G. Rozenberg, T. Bäck
and J. N. Kok (eds.) Handbook of Natural Computing, 987–1033, Springer, Heidelberg.

PTV (2011) VISUM 12 - New features at a glance, PTV, Karlsruhe.

Raney, B. (2005) Learning framework for large-scale multi-agent simulations, Ph.D. Thesis, ETH Zurich,
Zurich.

Raney, B. and K. Nagel (2006) An improved framework for large-scale multi-agent simulations of travel
behaviour, in: P. Rietveld, B. Jourquin and K. Westin (eds.) Towards better performing European
Transportation Systems, 305–347, Routledge, London.

Redmond, L. S. and G. Mokhtarian (2001) The positive utility of the commute: Modeling ideal commute
time and relative desired commute amount, Transportation, 28 (2) 179–205.

Regan, A., H. Mahmassani and P. Jaillet (1998) Evaluation of dynamic fleet management systems: Sim-
ulation framework, Transportation Research Record, 1645, 176–184.

Reinhold, T. (2006) Konzept zur integrierten Optimierung des Berliner Nahverkehrs, in: Öffentlicher Per-
sonennahverkehr, 131–146, Springer, Berlin, doi:10.1007/3-540-34209-5_8.

Rieser, M. (2010) Adding transit to an agent-based transportation simulation: Concepts and implemen-
tation, Ph.D. Thesis, TU Berlin, Berlin, doi:10.14279/depositonce-2581.

Rieser, M., D. Grether and K. Nagel (2009) Adding mode choice to a multi-agent transport simulation,
Transportation Research Record, 2132, 50–58, doi:10.3141/2132-06.

Ronald, N., R. G. Thompson and S. Winter (2014) Simulating demand-responsive transportation: A review
of agent-based approaches, submitted to Transport Reviews.

Ronald, N., R. G. Thompson and S. Winter (2015) A comparison of constrained and ad-hoc demand-
responsive transportation systems, in: 94th Transportation Research Board Annual Meeting, Wash-
ington, D.C., January 2015.

April 25, 2024 198

http://vsp.berlin/publications
http://dx.doi.org/10.5198/jtlu.2015.390
http://www.openstreetmap.org
http://dx.doi.org/10.1007/3-540-34209-5_8
http://dx.doi.org/10.14279/depositonce-2581
http://dx.doi.org/10.3141/2132-06

Bibliography Bibliography

Russel, S. J. and P. Norvig (2010) Artificial Intelligence – A Modern Approach, Pearson Education, Upper
Saddle River.

Schüssler, N. (2010) Accounting for similarities between alternatives in discrete choice models based on
high-resolution observations of transport behaviour, Ph.D. Thesis, ETH Zurich, Zurich.

Simon, P. M., J. Esser and K. Nagel (1999) Simple queueing model applied to the city of Portland,
International Journal of Modern Physics C, 10 (5) 941–960.

Simunto GmbH (2018) Via – visualization and analysis tool, webpage, https://www.simunto.com/via.

Smith, L., R. Beckman, D. Anson, K. Nagel and M. Williams (1995) TRANSIMS: TRansportation ANalysis
and SIMulation System, in: 5th National Transportation Planning Methods Applications Conference,
Seattle, WA.

Song, G., L. Yu and Y. Zhang (2012) Applicability of traffic microsimulation models in vehicle emissions
estimates, Transportation Research Record, 2270, 132–141.

Strippgen, D. (2009) Investigating the technical possibilities of real-time interaction with simulations of
mobile intelligent particles, Ph.D. Thesis, TU Berlin, Berlin.

Swiss Federal Statistical Office (BFS) (2000) Eidgenössische Volkszählung 2000, http://www.bfs.admin.
ch/bfs/portal/de/index/infothek/erhebungen__quellen/blank/blank/vz/uebersicht.html.

Swiss Federal Statistical Office (BFS) (2001) Eidgenössische Betriebszählung 2001 – Sektoren 2
und 3, GEOSTAT Datenbeschreibung, Swiss Federal Statistical Office (BFS), GEOSTAT, Neuchatel,
http://www.bfs.admin.ch/bfs/portal/de/index/dienstleistungen/geostat/datenbeschreibung/

betriebszaehlung05.Document.111424.pdf.

Swiss Federal Statistical Office (BFS) (2006) Ergebnisse des Mikrozensus 2005 zum Verkehrsverhalten,
Swiss Federal Statistical Office (BFS), Neuchatel.

Thill, J.-C. (1992) Choice set formation for destination choice modelling, Progress in Human Geography,
16 (3) 361–382.

Train, K. E. (2003) Discrete Choice Methods with Simulation, Cambridge University Press, New York.

TRANSIMS Open Source (2013) Getting Started with TRANSIMS, webpage, http://code.google.com/p/

transims/wiki/GettingStarted.

U.S. Bureau of Public Roads (1964) Traffic Assignment Manual, U.S. Department of Commerce, Washing-
ton, D.C.

Vickrey, W. S. (1969) Congestion theory and transport investment, The American Economic Review, 59 (2)
251–260.

Vovsha, P., E. Petersen and R. Donnelly (2002) Microsimulation in travel demand modeling: Lessons
learned from the New York best practice model, Transportation Research Record, 1805, 68–77.

Waraich, R. A., D. Charypar, M. Balmer and K. W. Axhausen (2009) Performance improvements for large
scale traffic simulation in MATSim, in: 9th Swiss Transport Research Conference, Ascona, September
2009.

Wardrop, J. G. (1952) Some theoretical aspects of road traffic research, Proceedings of the Institution of
Civil Engineers, 1 (3) 325–362.

Weilenmann, M., J.-Y. Favez and R. Alvarez (2009) Cold-start emissions of modern passenger cars at dif-
ferent low ambient temperatures and their evolution over vehicle legislation categories, Atmospheric
Environment, 43 (15) 2419–2429.

Wismans, L., R. van den Brink, L. Brederode, K. Zantema and E. van Berkum (2013) Comparison of
estimation of emissions based on static and dynamic traffic assignment models, in: 92nd Annual
Meeting of the Transportation Research Board, Washington, D.C., January 2013.

Zheng, J. and J. Y. Guo (2008) Destination choice model incorporating choice set formation, in: 87th
Annual Meeting of the Transportation Research Board, Washington, D.C., January 2008.

April 25, 2024 199

https://www.simunto.com/via
http://www.bfs.admin.ch/bfs/portal/de/index/infothek/erhebungen__quellen/blank/blank/vz/uebersicht.html
http://www.bfs.admin.ch/bfs/portal/de/index/infothek/erhebungen__quellen/blank/blank/vz/uebersicht.html
http://www.bfs.admin.ch/bfs/portal/de/index/dienstleistungen/geostat/datenbeschreibung/betriebszaehlung05.Document.111424.pdf
http://www.bfs.admin.ch/bfs/portal/de/index/dienstleistungen/geostat/datenbeschreibung/betriebszaehlung05.Document.111424.pdf
http://code.google.com/p/transims/wiki/GettingStarted
http://code.google.com/p/transims/wiki/GettingStarted

Bibliography Bibliography

Zilske, M. and K. Nagel (2015) A simulation-based approach for constructing all-day travel chains from
mobile phone data, Procedia Computer Science, 52, 468–475, doi:10.1016/j.procs.2015.05.017.

April 25, 2024 200

http://dx.doi.org/10.1016/j.procs.2015.05.017

	Title Page
	Table of Contents
	Using MATSim
	Introducing MATSim
	The Beginnings
	In Brief
	MATSim's Traffic Flow Model
	MATSim's Co-Evolutionary Algorithm

	Let's Get Started
	Setting Up and Running MATSim
	Setting Up MATSim
	Running MATSim
	Configuring MATSim

	An Example Scenario
	Building and Running a Basic Scenario
	Typical Input Data
	Network file
	Population file = plans file

	Typical Output Data
	Data Requirements
	Population and Activity Schedules
	Network

	Units, Conventions, and Coordinate Systems
	Units
	Conventions for Identifiers
	Coordinate Systems

	Open Scenario Input Data
	MATSim examples utils
	Pre-packaged scenarios

	MATSim Survival Guide

	Available Functionality and How to Use It
	MATSim Modularity
	Levels of Access
	Using MATSim through the gui with config, network, and population only
	Using MATSim through the GUI with additional files
	Writing "Scripts in Java"
	Using Contribs or External Extensions
	Writing Your Own Extensions

	The Ideas Behind this Setup
	An Overview of Existing MATSim Functionality

	More About Configuring MATSim
	General
	MATSim Data Containers
	Network
	Population
	Further MATSim containers

	Global Modules and Global Aspects
	|controler| configfile section
	Parallel Computing
	|global| configfile section

	Mobility Simulations
	QSim
	JDEQSim
	Hermes

	Scoring
	Replanning Strategies
	Plans Generation and Removal (Choice Set Generation)
	Time Innovation
	Route Innovation
	Mode Innovation
	Plans Removal

	Plan Selection (Choice)
	Innovation Switch-Off

	Observational Modules
	Travel Time Calculator
	Link Stats

	More Information

	Visualizers
	Simunto Via
	Basic Information
	Introduction
	Simple Usage
	Use Cases and Examples
	Agent Visualization
	Facility Analysis
	Public Transport Analysis
	Scenario Comparisons
	Aggregating Data

	SimWrapper
	Basic Information
	Introduction
	Starting SimWrapper
	Using SimWrapper to view MATSim results
	SimWrapper views based on regular MATSim output
	SimWrapper dashboard generated by the SimWrapper contrib
	Self-configured SimWrapper dashboards

	Building interactive dashboards with SimWrapper
	To learn more

	OTFVis
	Basic Information
	Introduction
	Quickstart
	More Ways of Using OTFVis
	MVI Files (unmaintained)
	Starting OTFVis from the commandline (unmaintained)
	Use Cases of OTFVis (unmaintained)
	Viewing an MVI File (unmaintained)
	General Interaction with the Main Screen
	User Interaction in the Live Mobsim
	Running a Query in OTFVis Real Time Data

	Extending OTFVis
	Design Principles of OTFVis
	Readers and Writers
	Visualization of the Data
	Layers
	Patching the Connections
	Sending the Data
	Performance Considerations
	Sending Live Data

	Generation of MATSim input
	Generation of the Initial MATSim Input
	Coordinate Transformations in java
	Network Generation
	From OpenStreetMap
	From Other Sources

	Initial Demand Generation
	Simple Initial Demand
	Realistic Initial Demand

	Eqasim
	Basic Information

	Additional core features
	Additional MATSim Data Containers
	Attributable
	Time-Dependent Network
	Subpopulations
	Counts
	Facilities
	Households
	Vehicles

	Multi-modal QSim and its interaction with routing
	Other Modes than Car: Introduction
	Other Modes than Car: Routing Side
	Routing Side: Teleportation
	Routing Side: Network Modes
	Routing Side: Passenger Modes
	Other Routing Options

	Other Modes than Car: QSim Side
	QSim Side: Teleportation
	QSim Side: Network Modes
	QSim Side: Explicitly Simulated Passenger Modes
	QSim Side: Departure Handlers

	Other Modes than Car: Scoring Side
	Vehicle Types and Vehicles
	Vehicle sources and vehicle id
	Vehicle Placement and Behavior

	Legs, trips, and interaction activities
	Access/egress routing
	Other

	Modeling Public Transport with MATSim
	Basic Information
	Introduction
	Data Model and Simulation Features
	File formats
	|transitVehicles.xml|
	|transitSchedule.xml|
	Events for a public transit trip

	Swiss Rail Raptor
	Running with small sample sizes
	Possible Improvements

	A Closer Look at Scoring
	Good Plans and Bad Plans, Score and Utility
	The Current Charypar-Nagel Utility Function
	Mathematical Form
	Basic Function
	Activities
	Travel
	Illustration
	The "Wrapping Around" of the Utility Function
	MATSim Scoring, Opportunity Cost of Time, and the VTTS
	The Resulting Modeling of Schedule Delay Costs

	Implementation Details
	Negative Durations
	Score Averaging
	Forcing Scores to Converge

	Typical Scoring Function Parameters and their Calibration
	Helper functions
	Experienced plans

	Applications and Extensions of the Scoring Function
	Appendix: Old Version of the Zero Utility Duration

	Analysis
	CSV outputs
	MATSim standard CSV outputs
	Recommendations for using CSV in the MATSim context
	CSV file format variations: delimiters, header, quotes, and comments
	Guidance on creating MATSim-standard CSV files

	Python bindings
	Basic Information
	Introduction
	Installation
	Using the MATSim Python API

	R bindings
	Basic Information
	Introduction
	Installation
	Using the R API

	The "Analysis" Contribution
	Basic Information
	Summary

	Emissions
	Basic Information
	Introduction
	Integrated Approaches for Modeling Transport and Emissions
	Emission Calculation
	Software Structure

	Noise
	Basic Information

	Accidents
	Basic Information

	Extending MATSim
	Dynamic Transport Services
	Introduction
	DVRP Contribution
	DVRP Model
	Schedule
	Least-Cost Paths

	DynAgent
	Main Interfaces and Classes
	Configuring and Running a Dynamic Simulation
	RandomDynAgent Example

	Agents in DVRP
	Drivers
	Passengers

	Optimizer
	Configuring and Running a DVRP Simulation
	OneTaxi Example
	Research with DVRP

	The "Minibus" Contribution
	Basic Information
	Paratransit
	Network Planning or Solving the Transit Network Design Problem with MATSim

	Destination Innovation
	Basic Information
	Introduction
	Key Issues in Developing the Module
	Error Terms
	Quenched Randomness
	Search Space Construction and Evaluation
	Destination Choice Set Specification
	Facility Load

	Application of the Module
	The Module in the MATSim Context
	Lessons Learned
	Further Reading

	How to Write Your Own Extensions and Possibly Contribute Them to MATSim
	Introduction
	Preparation: Scripts-in-Java
	matsim Extension Points: General
	Extension Points Related to Scenario
	Customizable and ObjectAttributes
	Additional Scenario Elements

	Events
	Configuring the Controler (= inject syntax)
	Binding a Class (= an Implementation Type)
	Binding an Instance
	Binding a Provider (not important to get started)
	matsim default bindings
	Advantages of the injection framework
	Pre-configured matsim extension points
	ControlerListener: Handling Controler Events
	Mobsim Listener
	TripRouter
	Mobsim
	PlanStrategy
	Scoring

	Additional Config Groups
	MATSim extensions
	Conclusion

	Organization: Development Process, Code Structure and Contributing to MATSim
	MATSim's Team, Core Developers Group, and Community
	Roles in the MATSim Community
	Code Base
	Main Distribution
	Core
	Contributions
	Playgrounds
	Contributions and Extensions
	Releases, Nightly Builds and Code HEAD

	Drivers, Organization and Tools of Development
	Documentation, Dissemination and Support
	Your Contribution to MATSim

	Acronyms
	Glossary
	Bibliography

